Automotive Applications using White Light Interferometry

Bruker Nano Surfaces and Metrology Division

Introduction

- confidential -

Overview of several Automotive Applications using White Light Interferometry

3D Microtexture Measurements and Analyses for Automotive Components

- 3D roughness, step, and shape measurement
- Rapid, noncontact, R&D and production metrology
- Subnanometer vertical resolution
- Submicron lateral resolution
- · Industry-leading data analysis software

- 3D quantification provides profound insights into part performance
- Repeatable non-contact measurements does not deform or damage surfaces
- High vertical resolution captures optical-grade surface roughness
- Vertical range enables measurement of large steps, surface excursions, and film thicknesses
- Comprehensive data analysis offers in-depth understanding of surface performance

7/27/2023

Bruker Confidential

What Optical Profiling Do for the Automotive Industry

3D, High-Speed, Microtextured Measurement and Analysis

Quantify Wear...

- Failure analysis investigation
- Design for longer life

Quantify Texture...

• Design the Surface for Performance

Quantify/Monitor Manufacture Process...

- Monitor production
- Quality control
- Improve production

Different Metal Surface Preparations

Paint finish

Bruker Confidential

Wear on cylinder wall

Automotive Applications Surface Texture Characterization

Optical profiling gathers critical data on:

- Component Wear (Rings, Piston Skirt, Gear, etc.)
- Friction (Clutch Plates, Rings, Pistons, Gears, etc.)
- Fluid Handling/Sealing Surface (Valves, Seals, etc.)
- Noise, Vibration, Harshness (Brakes, Gears, Clutches, etc.)
- Sensor Failure (Fuel level Sensor, Air Bag Sensor, etc.)
- Coatings/Textile (Adhesion, Appearance, etc.)

Brake rotor surface texture

Connecting rod bearing surface wear pattern Failed surface preparation for paint

Automotive Applications *Film Thicknesses*

- Lubricant thickness
- Anodization layers
- Polymer coatings

Measurement Fringes on Top and Bottom of Film Surface Thickness Avg: 4.95 um Thickness Rt: 1.30 um Thickness Rp: 5.45 um Thickness Rv: 4.15 um

Film Thickness

Bruker Confidentia

Top Surface

Bottom Surface

NPFlex – Made for Automotive

Versatility of measurable parts Inherent Flexibility and Accuracy

7/27/2023

Bruker Confidential

Versatility of Measurable Locations Optional rotational stage

7/27/2023

Bruker Confidential

Versatility on accessibility SLWD objective and fold Mirror

SLWD = Super Long Working Distance 34mm working distance

Piston head

Fold mirror gives side access

Versatility of measurable locations Optional swivel head and deep fold mirror

Inner Cylinder Sleeve Bore

Swivel head ± 45°

Steering Wheel Column

Bruker Bench Top Measurement ContourX White Light Interferometers

ContourX-100

ContourX-200

ContourX-500

Bruker Bench Top Tribology Offering Wear Testers to Measurements

7/27/2023

Bruker Confidential

BRÚKÉR

What is White Light Interferometry

White Light Interferometry A Specialized High-End Microscope

- White Light Interferometry, also know as Coherence Scanning Interferometry, scans thru focus using specialized interferometric objectives which creates a fringe pattern thru that focus
- Using this pattern at known heights create a topographic map of the surface

ER

White Light Interferometry A Specialized High-End Microscope

- Microscopes with interferometric objectives with internal mirror used to provide sample height data with the created fringe pattern
- Optics scanned vertically so that the sample is passed through focus
- Computer system computes up to sub-nanometer height information from this focus scan data for each camera pixel

MEMS (air bag) Cotton Weave Quarter

Surface Characterization using S-Parameters

Automotive Definitions Is Ra (Sa) Enough?

 But these surfaces are different functionally (fluid retention, friction, etc.)
 3D areal parameters (S-parameters) have been developed to capture and quantify differences

Automotive Definitions S-Parameters provide missing details

Automotive Definitions S-Parameters

- Automotive Definitions V-Parameters Bearing Curve Ratio (1)
- Parameters can predict surface wear and retention
 - Peak areas that erode first are quantified (Spk)
 - Load bearing surface is identified (SK)
 - Valley areas that contain lubricates (Svk)

Automotive Definitions V-Parameters Bearing Curve Ratio (2)

Bearing ratio analysis of the two surfaces in Figure 2. The stock that eventually corroded showed a greater percentage of valleys deeper than 2 microns.

Figure 2. Stock either maintained an acceptable surface finish (left image) or corroded (right image) following processing. 3D parameters helped trace the difference to a predominance of deep valleys which Ra did not discern.

Bruker Confidential

Wear/Corrosion Characterization

Wear of Cylinder Components *Quality Control and Failure Analysis*

Bruker profilers have characterized drive train components

- Shaft, cam, rod, valve roughness and wear
- Cylinder bore machining

Quantifying cylinder bore finish and wear

2D and 3D plots of honed cylinder wall showing volume of material lost over time, ratio of peaks to valleys, directionality of wear, etc.

Hypoid Pinion Gear Wear (1) Ability to Measure Shaft and Tooth-One Setup

- <u>Hypoid</u> tooth shape preferred to apply more torque over a smaller "contact patch" area
- Currently used contact technique or cut down on parts
- Form & roughness using stitching of multiple images due to large contact patch

Rq	0.25 mm
Ra	0.22 mm
Rt	0.95 mm
Rp	0.22 mm
Rv	-0.73 mm

Angle	-9.33 mrad
Curve	-73.44 mm
Terms	None
Avg Ht	-0.06 mm
Area	-1.39 mm2

Tooth bow x-section shows range of z-height.

7/27/2023

Bruker Confidential

Hypoid Pinion Gear Wear (2) Using Volume and Areal Surface Parameters

- Volume measurements quantify the amount of wear in the contact zone and show the displacement of material toward the OD of the gear
- 20mm stitch of hypoid gear tooth

Material Deposited

 \leftarrow

Unworn area Sa= 3.48um

Volume Calculations		
Volume Options	Normal	
Natural Volume	251763504.00	um3
Normal Volume	4.70	um3
Negative Volume	20941616.00	um3
Positive Volume	21643120.00	um3
Net Missing Volume	-701504.00	um3
Total Displaced Volume	42584736.00	um3

Worn area Sa= 0.78µm

Automotive Application Wear Measurement on Clutch Plates

Paper Clutch Plate (slightly worn)

Paper Clutch Plate (highly worn)

Cam Cap Wear Study Supplier Selection Testing Study

Bruker Confidential

Quantify Wear Depths, Volume Loss/Gain Analysis

- Pin and Ball Wear Study
- Quantify material characteristics with wear studies
- Quantify material removal in terms of volume
- Evaluate negative, positive and missing volumes

Quantify Wear Depths, Volume Loss/Gain Analysis

-26.0

- Measure inside surfaces!
 - The cutting edge that wears, not the outer circumference
- Machining bits
 - Roughness, radii of curvature, angles
- High-speed machining
- Quantify wear and set conditions on replacement

Quantify Wear Depths, Volume Loss/Gain Analysis

Cutting Surfaces 2

- Study wear with usage
 - Cutting bit roughness changes over the course of 30 uses
 - Material redeposit on surface significantly affects topology
- Radii of curvature, edge quality unaffected

Bruker Confidential

Quantify Corrosion Depths, Volume, Size Analysis

- Corrosion
 - Automatic detection and characterization of corrosion and defects on surface
 - Recipe saved for each type process and analysis

Region	Mean	Diameter	Area	Rv%	Volume
	(um)	(um)	(mm2)	(um)	(um3)
84	-3.002	38.054	0.001	-4.567	-1799.938
85	-2.916	44.755	0.001	-4.375	-3096.113
86	-2.517	54.458	0.001	-3.537	-2860.571
87	-2.067	27.525	0.000	-2.598	-722.797
88	-2.379	143.674	0.005	-3.852	-12003.441
89	-2.003	24.869	0.000	-2.567	-650.465
90	-2.054	35.194	0.000	-2.556	-769.561
91	-2.004	25.604	0.000	-2.423	-725.695
92	-2.161	29.756	0.000	-2.983	-836.811
93	-2.330	48.645	0.001	-3.859	-2503.165
94	-2.311	72.611	0.002	-3.787	-3550.267
95	-2.560	40.735	0.001	-3.866	-2461.870
96	-2.243	30.417	0.000	-4.048	-1008.718
97	-2.880	54.525	0.002	-4.353	-5034.870
98	-2.812	110.301	0.003	-4.695	-8884.792
99	-2.133	52.653	0.001	-2.824	-1838.387
100	-2.512	74.810	0.002	-4.067	-5176.191
101	-2.428	31.592	0.000	-3.704	-1000.648
102	-2.401	31.592	0.001	-3.314	-1589.020
103	-2.412	40.894	0.001	-3.665	-2349.824
104	-2.523	30.301	0.001	-3.528	-1354.902
105	-2.281	55.304	0.001	-3.409	-2193.438
106	-1.961	57.487	0.001	-2.433	-2840.395
107	-2.570	95.290	0.002	-4.130	-3980.248
108	-2.152	36.305	0.001	-3.075	-1155.807
Average	-2.349	44.681	0.001	-3.551	-2184.592
Std Dev	0.290	20.851	0.001	0.782	1849.531
Range	1.555	120.458	0.005	4.583	11362.362
	•				•

Title: Process A

Quantify Wear Depths, Volume Loss/Gain Analysis

- Wear mechanisms can change over time
- Failure Analysis Done
- Lifetime testing of before and after components

Nominal Wear

Profile along worn contact

Failed Component

Bruker Confidential - confidential

Surface Finish – Gear Teeth using SLWD Objective

Tooth roughness **SLWD** Objective

Surface Stats: Ra: 335.41 nm Rq: 405.66 nm Rt: 3.69 um

Super Long Working Distance objective allows for sidewall tooth inspection

7/27/2023

36

Cylinder Bore Inspection

Cylinder Bore Inspection **Complete Solution for Pre-Inspection**

contact mechanics with rings

Valley affects oil retention

Cross hatch – deep valleys – affect gas/fluid flow and fluid retention

Automatic defect analysis

Bore-Scope objective collecting data 150 mm inside large metal engine cvlinder liner.

Dynamic Sealing Interfaces and Surface Texture

Cylinder Bore / Rings

Cylinder Bore Surface Texture

OVERALL Engine Performance

7/27/2023

Bruker Confidential

Cylinder Bore Inspection Complete Solution for Post-Inspection

Severe Cylinder Wear and Catastrophic Damage

7/27/2023

Bruker Confidential

Brake

- confidential -

Brake Rotor Characterization of Performance

- Brake rotor vibration
 - Enhanced process control of noise vibration harshness
 - Discern between tool life, material, pre/post machining operations, etc.

Ra: In spec Sdq: **Low**

Ra: In spec Sdq: **High**

Cam and Crank shaft

Shaft roughness Leak Prevention with Sds/Ssc Parameters

Camshaft & Crank Shaft Roughness Challenging Access Resolved with SLWD

7/27/2023

Bruker Confidential

7/27/2023

Camshaft Lobe Chatter

 Surface texture of camshaft lobe shows evidence of chatter

- Quantify periodicity with optical interferometry
- Metrology results in:
 - Better manufacturing and design of interfacing surfaces to avoid engine noise & failure
 - Better operation and timing for proper combustion and subsequent lower emissions

Material Surface Assessment

Influence of Texture & Processes Surface Finish to Efficiency/Performance

Cylinder bore machining (Courtesy GM Powertrain)

Experimental **Clutch plate** designs (Courtesy Steel Parts)

Influence of Texture & Processes Surface Finish to Process Results

Shot Peened surface

Laser Peened surface

7/27/2023

Influence of Texture & Processes Pre-Paint Surface Finish to Final Visual Quality

7/27/2023

Influence of Texture & Processes Various Preparation Processes

 The surface roughness and waviness of different steels was quantitatively tested

Sealing Surfaces

Flatness From Seals to Fuel Injectors

Face Seal - "Form - Waviness - Roughness"

BRUKER

Rubber O-Ring

O-Ring Form Removed

 Sa
 2.066
 μm

 Sku
 3.675

 Sp
 9.365
 μm

 Sq
 2.63
 μm

 Ssk
 -0.204

 Sv
 -21.94
 μm

 Sz
 31.305
 μm

7/27/2023

Bruker Confidential

Clutch

- confidential -

Clutch Plate Tab Roll Off *Easy Acquisition and Analysis*

- Metrology results in better clutch materials for improved performance
- Roll off limits movement of the whole plate- tabs stick to hub
- Friction causes chatter, premature wear, slippage, overheating

7/27/2023

Rotor

- confidential -

Tribology of Rotors New Areal Roughness Parameters

- Contact surface under significant load, friction, heat
- S Parameter Metrology provides:
 - Functional: surface wear, lifetime, performance, fluid retention information
 - Hybrid: directionality of surface texture

Sensors - Electronics

Electronic Measurements *Qualification and Failure Analysis*

7/27/2023

Bruker Confidential

Electronic Measurements *Qualification and Failure Analysis*

MEMS Sensors

Components - Contacts - Solder Bump Array

Bruker Confidential

Visual Appearance - Upholstery/Paint

Quantify Appearance New Areal Roughness Parameters

"Orange peel" in paint

Electro-polished surface

Bruker profilers have characterized automotive surface finish

- Cosmetic finishes
- Surface-prep/cleaning
- Paint
- Plating
- Anodizing
- Polishing
- Upholstery

Dashboard upholstery "pleather" texture

Lense - Reflector

Dimensional Measurements

Dimensional Measurements 2D CAD Analysis w/ Vision MAP

Contour analysis mil 200 x 10 150 100 50 -50 122 04 (K 2010) -100 -150 -250 Part courtesy of

Mechanical workpiece

Dimensional analysis of geometrical profiles according to ISO 1101: sizes, angles, radii, diameters, form deviations.

Compare against CAD model or user-defined tolerances

7/27/2023

Bruker Confidential

250 mil

Dimensional Measurements Thread Analysis w/ Vision MAP

7/27/2023

64

Summary

- confidential -

Summary - Characterization, Qualification and Failure Analysis

- 3D optical profiling provides unprecedented, nondestructive insight into surface characteristics, functionality, and performance
- 3D profiling provides accurate surface data for:
 - R&D
 - Testing
 - Process development and control
 - Failure analysis
- Bruker Series of optical profilers offers the most comprehensive metrology platform available for quantifying wear, texture, manufacturing processes, and many other automotive applications with automated data capture and analysis

Innovation with Integrity

Innovation with Integrity