

Exhaust Gas Technologies Inc. 15642 DuPont Ave. Suite B Chino, CA 91710 USA

Ph# 800-348-4678 or 909-548-8100 Fax# 909-680-3226 Email: Sales@exhaustgas.com Website: www.exhaustgas.com

Industrial Catalog

EGT is a Watlow Distributor

FXHAU

TECHNOLOGIES, INC

Exhaust Gas Technologies Inc. carries the complete line of Watlow heater products, as well as sensors and controls. Our Watlow heater products include band, cable, cartridge and ceramic fiber styles as well as flexible rubber, multi cell, radiant strip and tubular heater products. We also carry Watlow thick film and flange immersion heaters. With a wide selection of heater products to choose from, we are sure to have the unit that will meet your industry's needs.

For over 85 years, Watlow has designed and manufactured a variety of temperature controller products and SCR power controls. Our line of Watlow temperature controller models and SCR power control units utilizes today's technology to provide the features and accuracy that are needed for today's applications to precisely run critical machines and equipment.

Watlow is a world class supplier of thermocouple products. They have designed and manufactured millions of general purpose and mineral insulated Watlow thermocouple units for critical process control of industrial, food, plastics and metal equipment. Numerous industries rely on Watlow thermocouple products to get the job done.

If you have any questions regarding the Watlow heater models listed on our website or need assistance finding the right Watlow sensors or controls for your application, please feel free to contact us. 1-800-348-4678

INDEX

	Page #
Introduction	6
Thermocouple Principles	7
Thermocouple Types	8
Accuracy	9
Metrology Lab	10

SECTION 1 Thermocouples, Plastic's MFG.

Micro Gage Thermocouples	12
TW Flexible Wire	13
RW Ring Terminal	14
EX Flexible Extension	15
TP Tube and Wire	16
BP Fixed Bayonet	17
AP Armor Adjustable	18
SP Spring Adjustable	19
MB Melt Bolt	20
TB Beaded Base Metal	21
NB Noble Metal	22

SECTION 2 MGO Thermocouple Assemblies

Introduction	23-25
CM Plug or Jack Termination	26-27
EM Cut and Strip	28
SM Spring Loaded	29
LM Metal Transition	30
QM Large Transition	31
WM Weld Pad/Tubeskin	32
PM Fixed Fitting	33
FM Spring Loaded Fitting	34
BM Spring Loaded Oil Fitting	35
HM Head Termination	36
IM Industrial Remote	37
M Multipoint Type T/C	38
XM Engine Exhaust Probes	39

SECTION 3 RTD Assemblies	Page #
Introduction	40-43
RE Tube and Wire	44
RF Spring Loaded	45
RK Fixed Double Fitting	46
RP Fixed Single Fitting	47
RC Plug Termination	48
RL Metal Transition	49
RS Spring Loaded	50
RH Connection Head	51
RT Connection Head	52
RB Spring Loaded	53
RR Industrial Remote	54
RN Sanitary Head Assembly	55
RY Sanitary Lead Wire Assembly	56

SECTION 4 Industrial T/C & RTD Sensors

Introduction	57-61
MW Style - MGO Style for Wells	62
IW Style - Base Metal for Wells	63
RW Style - RTD's for Wells	64
HMT Style - Metal Protection Tube Assy	65
HCT Style - Ceramic Tube Assemblies	66
TB Style - Beaded Base Metal	67

SECTION 5 Thermowell / Protection Tubes

Introduction	68
Material Compatibility Chart	69
SW Straight Drilled Thermowells	70
TW Tapered Drilled Thermowells	71
SL Straight/Lagging Drilled Thermowells	72
TL Tapered/Lagging Drilled Thermowells	73
BW Stepped Drilled Thermowells	74
BL Stepped/Lagging Drilled Thermowells	75
FS Drilled Thermowells	76
Metal Protection Tubes & Fittings	77
Ceramic Protection Tubes	78

INDEX

Page #

SECTION 6 Accessories

Introduction	79
Mounting Fittings	80-81
Connector Blocks	82-83
Thermocouple Connection Heads	84-90
Signal Transmitters	91-92
Connector Systems	93-94
Panel Jacks	95-97
RTD Connectors	98

SECTION 7 Thermocouple Wire

Introduction	n Thermocouple Wire	99-100
Thermocou	ple Wire Selection	101-103
502 Series		104
510 Series		104
507 Series		105
509 Series		105
508 Series		106
511 Series		106
512 Series		107
301 Series		107
304 Series		108
307 Series		108
321 Series		109
350 Series		109
900 Series		110
700 Series	RTD Wire	110
Notes	•••••	111

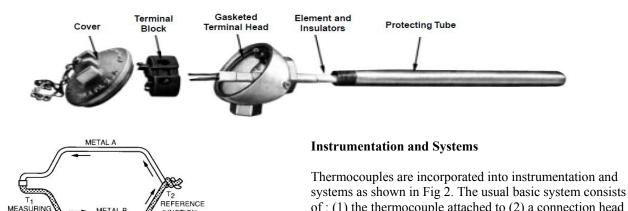
SECTION 8 Thermocouple Reference Tables	Page #
Introduction Reference Tables	112
Type J-°C	113
Type J-°F	114-115
Type K-°C	116-117
Type K-°F	118-120
Type R-°C	121-122
Type R-°F	123-125
Type S-°C	126-127
Type S-°F	128-130
Type T-°C	131
Type T-°F	132
Product Order Form	133
Terms and Conditions	134

EGT Supports Our Military	135
MACcc-400 Carbon Fiber Repair Project	136

WELCOME!

EXHAUST GAS TECHNOLOGIES manufactures a wide range of thermocouple assemblies for all types of industrial uses. Our staff has over 80 years of engineering, manufacturing and applications experience ready to serve you. Should you need special assistance in the design or application of sensors you can be assured we will respond to your needs in a fast, courteous manner. We are committed to giving our customers the service they are looking for. Our 5,000 square foot service center and manufacturing operations are fully equipped with professional staff, state of the art equipment and extensive stock of raw materials, giving us the advantage and the ability to meet any delivery requirement, (including "same day" or "next day" emergency requirements).

Our Exhaust Gas Technologies motorsports group has been supplying professional race teams for over 20 years. We currently supply sensors for the top teams in NHRA, NASCAR, IMSA, CART and Bonneville. Our sensors have helped professional teams win 226 World Championships, 2438 National Championships and 703 World Records for speed and elapsed time. We also supply every major engine testing facility in the USA. Our customers are always moving fast, so we must also move quickly to insure that you, the client, are satisfied with our products quality, price and delivery. We thank you for the opportunity to serve you.


Sincerely, The Staff at Exhaust Gas Technologies

> Call Today – Toll Free, U.S. & Canada 1– 800 – 348 – 4678 Shop On Line at www.exhaustgas.com E-mail: sales@exhaustgas.com FAX: 909-680-3226 Visa, Master Card, Discover, PayPal, Terms OAC

EGT Thermocouple Principles

of : (1) the thermocouple attached to (2) a connection head which is located near the point of the measurement and is in turn connected by (3) extension wire to (4) an instrument which incorporates internal extension wire and the thermocouple reference junction.

In addition to these basic items, thermocouple assemblies and pyrometric systems contain necessary components such as thermocouple protecting tubes or wells, ceramic insulators on the thermocouple wires within protecting tubes, and various accessory fittings.

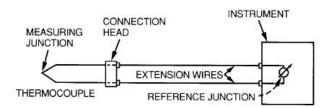


Fig 2 – Schematic Diagram of a Thermoelectric System.

Connection Heads

The purpose of the thermocouple connection or terminal head is to provide facilities for making positive electrical connections between thermocouple and extension wires and to provide a means of attachment for a protecting tube and extension wire conduit. The head contains a ceramic terminal block for all electrical connections. EGT offers a connection head for every application. Typical heads include a general purpose head for most installations; a screw cover head or our popular FLIP TOP HEAD, ideal for applications which must be completely weatherproof; and other connection means.

Extension Wire

Extension wire theoretically extends the thermocouple to the reference junction in the instrument. This wire is generally furnished in the form of a matched pair of conductors having insulation designed to meet the service needs of the particular application.

Many years of research and field experience have gone into the design of today's EGT thermocouples – making them a product well known for top performance and reliability. Together with controlling instruments, they have provided the answer to thousands upon thousands of temperature sensing and control problems.

Fia 1 - Sinale Thermocouple Circuit.

IUNCTION

Basically, a thermocouple is composed of two dissimilar metal wires welded together in a circuit, as in Fig. 1. The circuit develops a small DC voltage proportional to the temperature at the measuring junction whenever a temperature difference exists between the measuring and reference

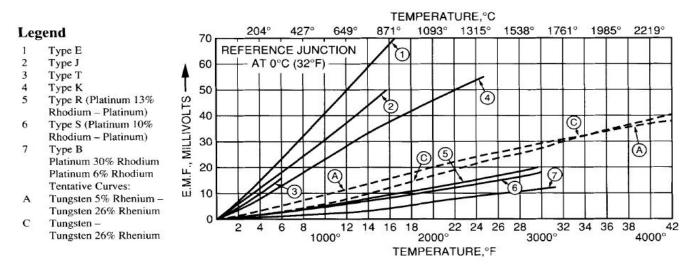
junction. This EMF is the simple means whereby temperature can be measured by instrumentation and systems.

Thermocouples

JUNCTIO

Thermocouples are installed directly (usually with a protecting tube or well) in the process medium, which can be corrosive and at high temperatures. A variety of thermocouple wire types are available to cover the temperature range- 184° to $+2330^{\circ}$ C (- 300° to $+4000^{\circ}$ F). Thermocouple wire is selected to provide a temperature-EMF relation which is as linear as possible.

Protecting tubes or wells are used for one or more of the following reasons: (1) to protect against deleterious gases; (2) to protect against corrosive fluids; (3) to provide suitable protection for a thermocouple in a pressurized vessel; (4) to protect against mechanical damage; (5) to support the thermocouple. A wide variety of tube and well materials are available. Various types of ceramic insulators are available to support and protect the thermocouple wire within a tube or well.


Protecting tubes and wells naturally tend to cut down the speed or response of thermocouples. For applications where faster response is desirable, such assemblies as "small mass," and "exposed tip" thermocouples are available.

Thermocouple Types

Frequently you will have a choice of thermocouple types. Make your selection carefully, based on factors such as operating temperature, accuracy and EMF output required, and the atmosphere in which you plan to install the thermocouple.

Refer to the tables and charts listed below.

Type T Copper-Constantan-High resistance to corrosion from atmospheric moisture or moisture condensation. Can be used in either oxidizing or reducing atmospheres.

Type E (originally Chromel*- Constantan)- primarily for oxidizing atmospheres. Does not corrode at subzero temperature.

Type K (originally Chromel-Alumel)**- Recommended between 583°C (1000°F), and 1093°C (2000°F) in oxidizing atmospheres.

Type J Iron-Constantan- Suitable where free oxygen is deficient. As oxidation of the iron conductor increases rapidly above 583°C (1000°F) of the instrument with which it will be used. This information can usually be found on the face of the instrument.

Type R and S Platinum Rhodium-Platinum; 13% or 10% Type B Platinum 30% Rhodium-Platinum 6% Rhodium. Recommended for use in oxidizing atmospheres. Easily contaminated in any other atmosphere, so caution should be used in these cases.

Tungsten-Tungsten 26% Rhenium | Tungsten 5% Rhenium-Tungsten 26% Rhenium

Recommended for reducing inert atmospheres or vacuum.

CAUTION: DO NOT use in the presence of FREE OXYGEN.

* Trademark, Hoskins Manufacturing Co.

**Type K thermocouple wire is manufactured under such trademarks as Chromel-Alumel (Hoskins Manufacturing Co.), Tophel-Nial (W.B. Driver Co.), T2-T2 (Driver-Harris C.),etc.

	Minimum		8	ga.	14	ga.	20	ga.	24	ga.	30	ga.
	Tempe	erature		Maximum Temperature								
Thermocouple Type	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
Type T (Copper-Constantan)	-184°	-300°	-	-			260°	500°	204°	400°	204°	400°
Type J (Iron-Constantan)	-18°	0°	760°	1400°	593°	1100°	482°	900°	371°	700°	371°	700°
Type E (Chromel-Constantan)	-184°	-300°	871°	1600°	649°	1200°	538°	1000°	427°	800°	427°	800°
Type K (Chromel-Alumel)	-18°	0°	1260°	2300°	1093°	2000°	982°	1800°	871°	1600°	871°	1600°
Type R and Type S	-18°	0°	-	-		-		-	1482°	2700°	-	-
Туре В	-18°	0°	-	-	<u>-</u>		-	-	1705°	3100°	-	-
Tungsten 5% Rhenium- Tungsten 26% Rhenium	-18°	0°	-	-	20	-	-	-	2330°	4200°	-	· · · -
Tungsten-Tungsten 26% Rhenium	-18°	0°	-	-	-	-	-	-	2330°	4200°	-	

Thermocouple Accuracy

Your control system performance depends upon the accuracy of your thermocouple. Here are five ways to get the accuracy you need with (EGT) thermocouples.

1. Standard grade thermocouple wire and extension wire conform to the limits of error listed below. These limits are equal to or better than ANSI standard limits of error as published in MC96.1- 5. N.I.S.T. certification of thermocouples can be ordered 1982 (°C limits).

2. (EGT) premium grade limits of error are equal to or better than ANSI premium limits of error as published in MC96.1-1982 (°C limits). Many types of premium grade base metal thermocouples and insulated wire are available at a slight additional cost.

3. Thermocouples and thermocouple materials are normally supplied to meet the limits of error as specified in the tables below for temperatures above 0°C. For Type T, however, the same materials may not fall within the sub-zero limits of error given in the tables. If Type T materials are required to meet sub-zero limits, the purchase order must so state. Special selection of materials usually will be required.

4. Checks on thermocouples and thermocouple wire can be performed for you in EGT's wire-testing laboratory at nominal cost. A certificate listing correction data is provided when this option is ordered. Duplicated copies are available at a small additional charge.

through Exhaust Gas Technologies.

*Limits apply to temperature at connection head and reference junction. **When the limit of error is given in percent, the percentage applies to the temperature differential between temperatures at the connection head and reference junction.

*** Limits of error apply to measuring junction temperature above 0°C (32°F).

† Applies only to 4 conductor wire when used with type R thermocouples. †† Applies only to 4 conductor wire when used with type S thermocouples. [†] Limits of error apply to measuring junction temperatures above 870°C (1598°F).

Limits of Error for Standard and Premium Grade Thermocouple Wire

(NOTE: When the limit of error is given in %, the percentage applies to the temperature being measured, not the range.)

		Limits of Error (Select whichever is greater)			
Type of Wire	Temperature Range	Standard Grade	Premium Grade		
Гуре Т	-200 to 0°C 0 to 350°C	±1°C or ±1.5% ±1°C or ±0.75%	±0.5°C or ±0.4%		
Copper-Constantan	-300 to 32°F 32 to 700°F	±1.5°F or ±2% ±1.5°F or ±0.75%	±0.75°F or ±1% ±0.75°F ±0.38%		
Type J Iron-Constantan	0 to 750°C 32 to 1400°F				
Type E Chromel-Constantan	0 to 900°C 32 to 1600°F	±1.7°C or ±0.5% ±3°F or ±0.5%	±1°C or ±0.4% ±2°F or ±0.38%		
Type K Chromel-Alumel	0 to 1250°C 32 to 2300°F	±2.2°C or ±0.75% ±4°F or ±0.75%	±1.1°C or ±0.4% ±2°F or ±0.38%		
Гуре R or S Platinum-Rhodium/Platinum	0 to 1450°C 32 to 2700°F	±1.5°C or ±0.25% ±3°F or ±0.25%			
Type B Platinum 30% Rhodium/ Platinum 6% Rhodium	800 to 1700°C 1600 to 3100°F	±0.5% ±0.5%			

Limits of Error for Standard and Premium Grade Extension Wire

Type of Wire	Temperature Range*	Limits of Error**	
		Standard Grade	Premium Grade
Type TX Copper-Constantan***	-60 to 100°C -75 to 200°F	±1.0°C ±1.5°F	±0.5°C ±0.75°F
Type JX Iron-Constantan	0 to 200°C 32 to 400°F	±2.2°C ±4°F	±1.1°C ±2°F
Type EX Chromel-Constantan	0 to 200 °C 32 to 400°F	±1.7°C ±3°F	
Type KX Chromel-Alumel	0 to 200°C 32 to 400°F	±2.2°C ±4°F	
Type SX Platinum-Rhodium-Platinum	24 to 200°C 75 to 400°F	±5°C ±9°F	 ±1.5%†;±2.5% ††

Metrology Laboratory

Exhaust Gas Technologies maintains a complete laboratory for testing and certification of both thermocouple and RTD temperature elements. Our "State of the Art" equipment carries full N.I.S.T. Traceable Certifications and EGT also holds many Special Industrial Certifications for demanding applications.

Our computerized laboratory boasts a system accuracy of 0.013% within a +75 F. to +2200 F. temperature range, with instrumentation resolution out six decimal places, (0.000000 F.) for the pinnacle in calibration and certification services for your demanding requirements.

Uniformity Survey Wire, Pre-Certified, for Fast Delivery:

EGT also stocks several different types of soft insulated thermocouple wire pre-certified at standard temperature points, for quick delivery.

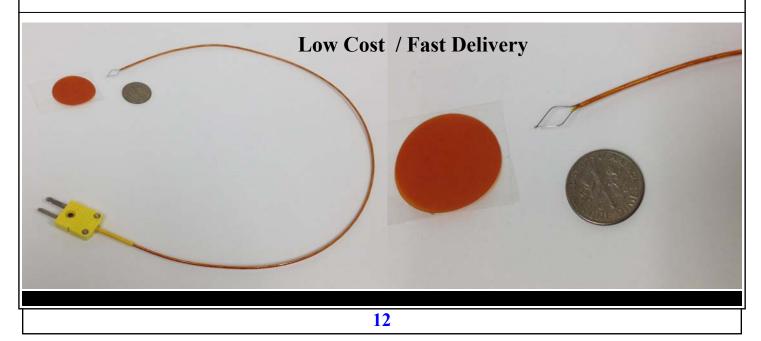
ANSI Type J & K 20 gauge with either Teflon # 507 Series or Braided Fiberglass # 304 Series insulations in "Special Limits of Error" are stocked on 500 Ft. spools.

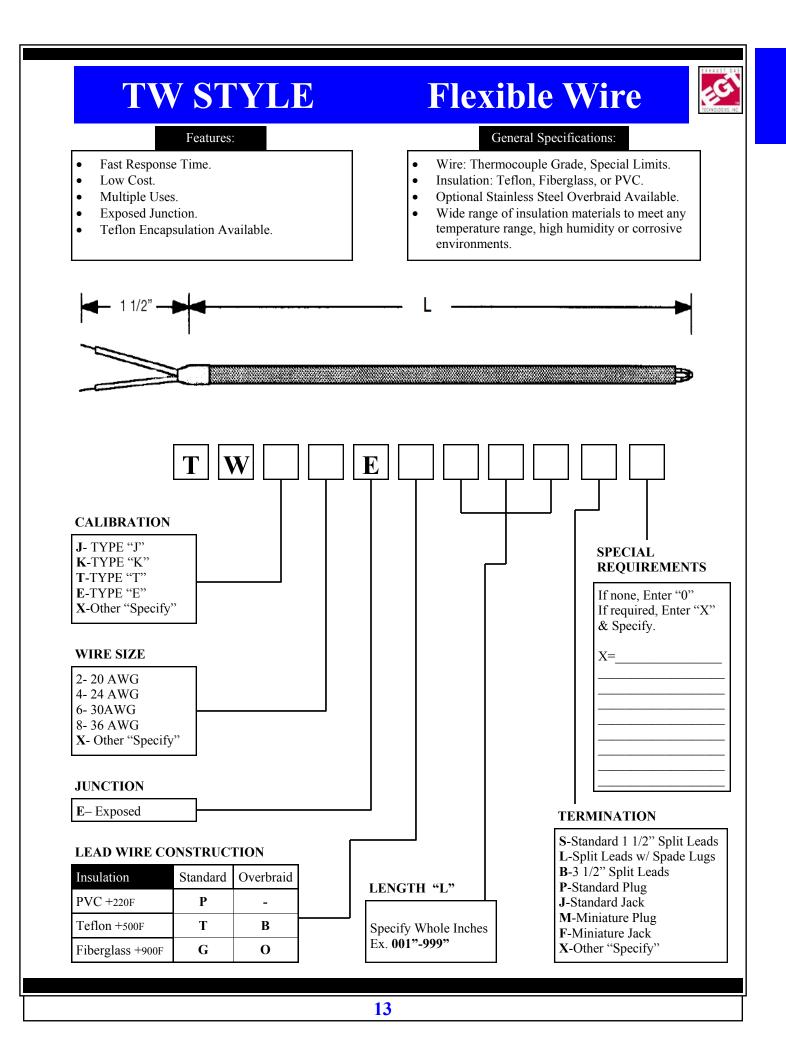
**See insulated wire section.

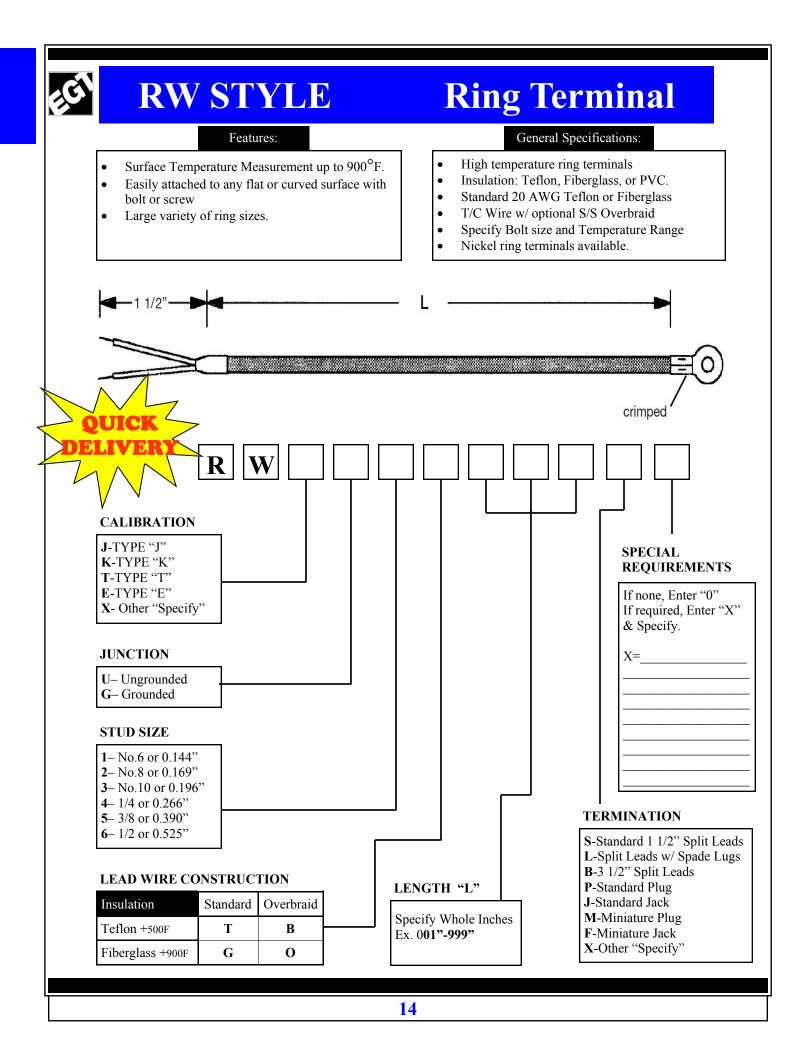
We devote several weeks per year to technical seminars for each technician's education on the proper testing techniques, procedures and documentation requirements.

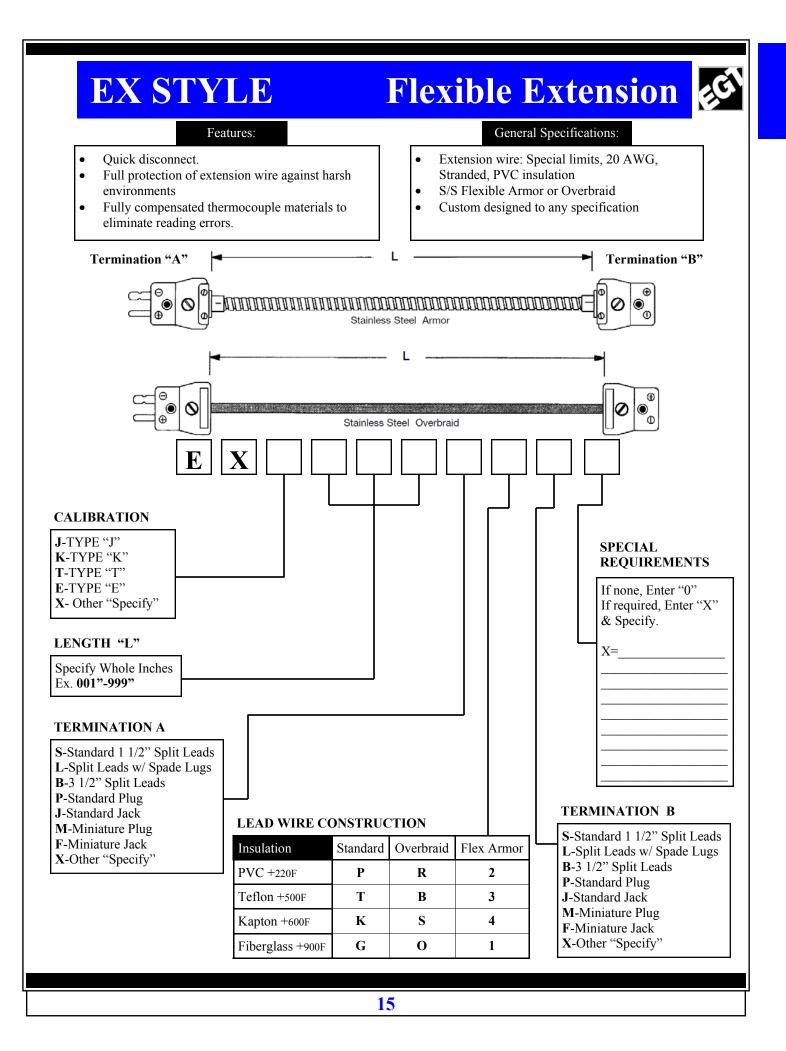
In 2001, EGT made a serious financial commitment to install and implement the highest quality, most accurate certification laboratory available. Since that installation was completed, several of our vendors have duplicated that system in-order to keep pace with us.

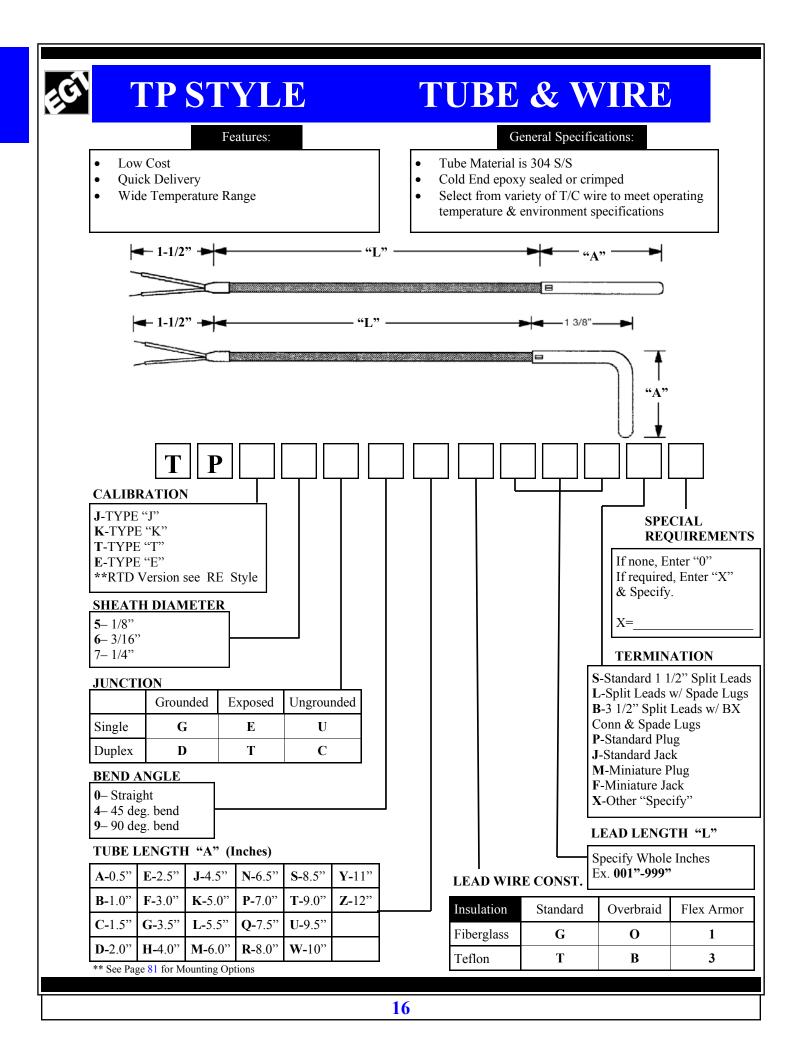
Exhaust Gas Technologies calibrates all production and testing equipment traceable to N.I.S.T. in Washington D.C. Reference standards used to calibrate transfer and working standards insurer uniformity throughout EGT, Inc. and your facility.

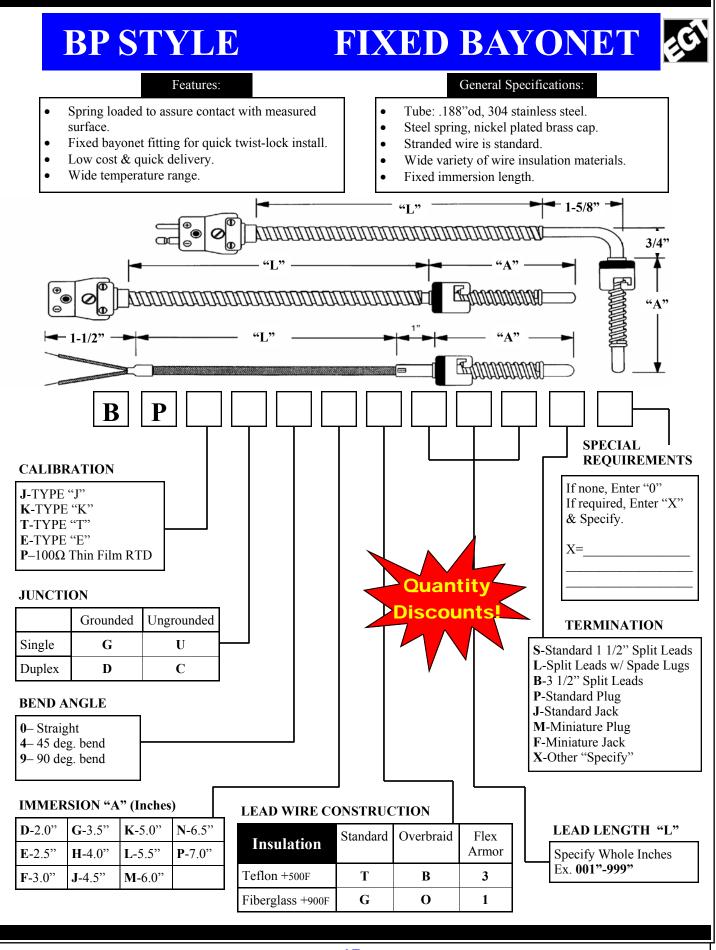


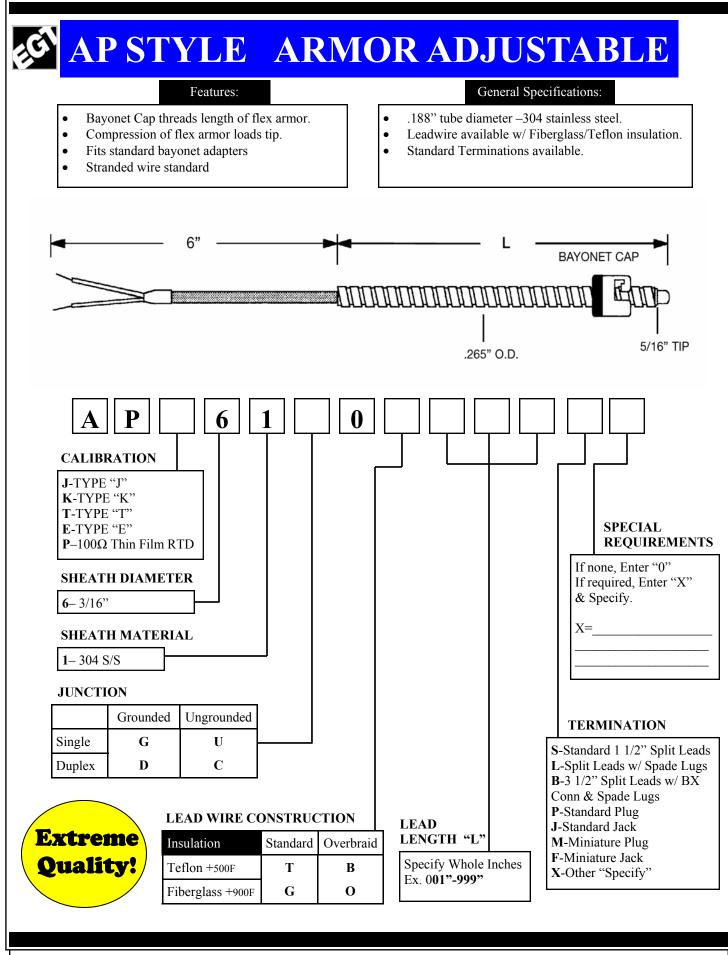

Thermocouples for The Oven & Plastic Industries

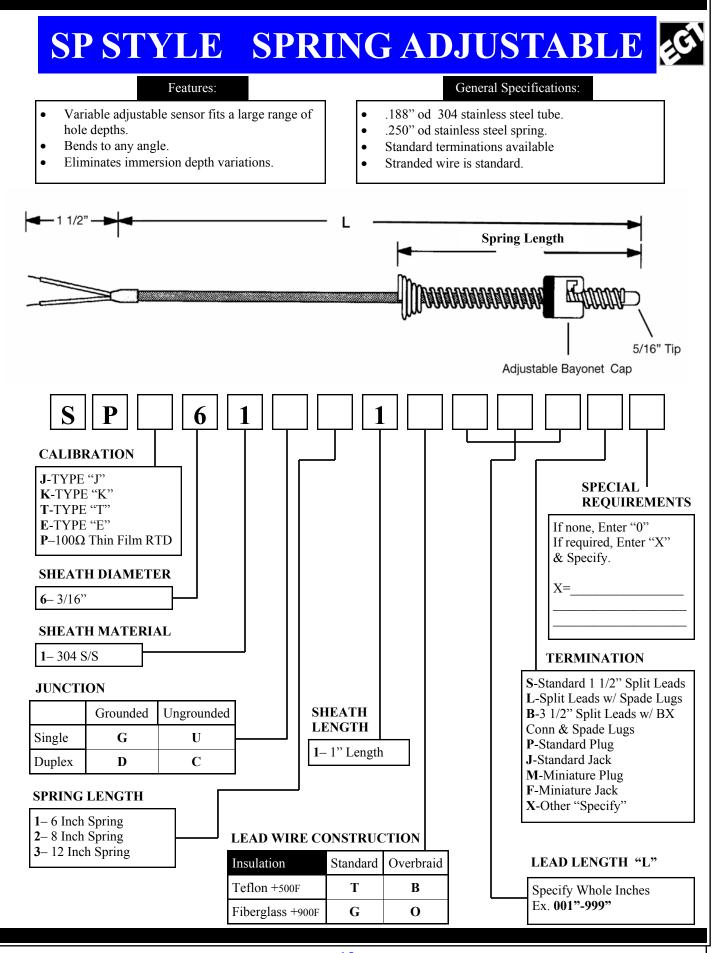


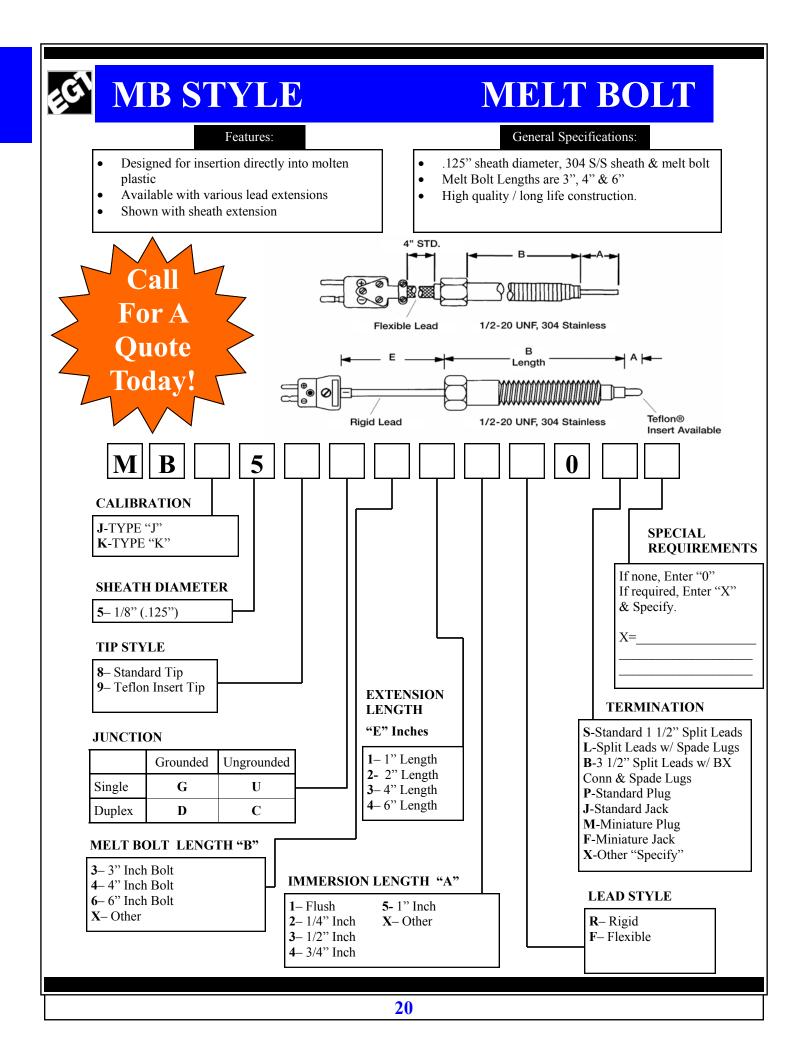

Micro Gage Thermocouples

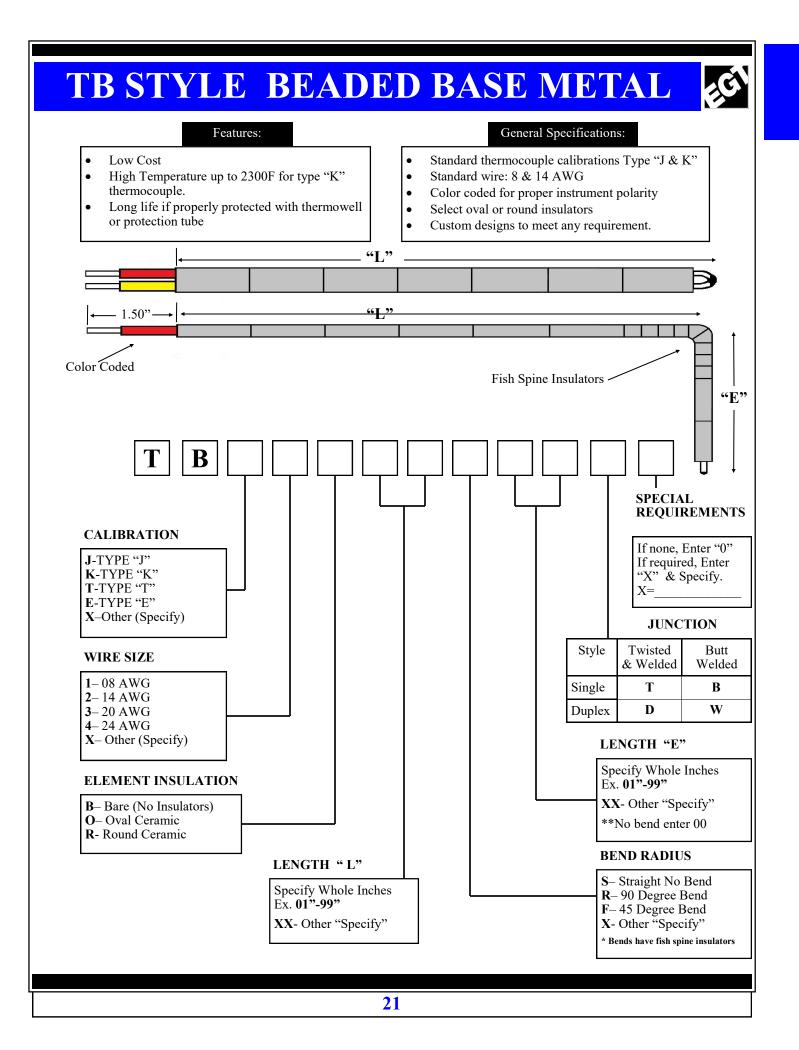

Micro gage thermocouples are used whenever fast, accurate temperature measurements are required. The small wire diameters enable accurate temperature measurements without disturbing the base temperature of the body, in which the installation is made, by keeping heat transfer via the leads to a minimum. Also, the micro junction permits accurate "pin-pointing" of the measured values. They are available in wire sized ranging from 20ga to 36ga. All micro gage thermocouples are made from carefully selected materials. To insure consistent thermoelectric properties, each sensor is made from matched pairs of wire within the same lot number. When specified, thermocouples made from the same lot number can be supplied at no extra charge.

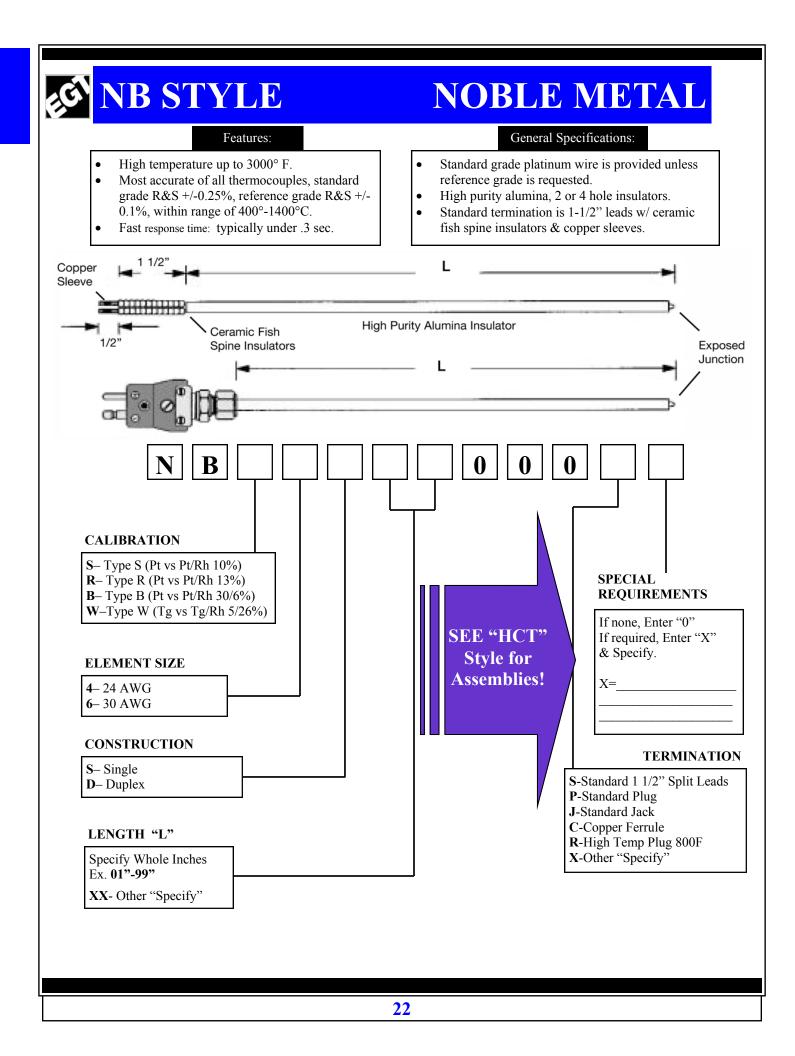












MgO THERMOCOUPLES

MGO Thermocouple Assemblies

■ DID YOU KNOW?

In today's new process industry, TEMPERATURE MEASURE-MENT has become a KEY Ingredient of a variable process. Today's expectation of a thermocouple is much higher than it was 70 years ago. The principle of a thermocouple was discovered in 1821 by Thomas Johann Seebeck, a German/Prussia Scientist. He found that when two dissimilar metals are joined in a closed circuit, an electromotive force is generated when the two junctions are maintained at different temperatures. This thermal EMF induces an electric current to flow continuously through the circuit until opened.

The success of any temperature measurement system depends not only on the capability of the system but also on how well the user understands the operation principles, advantages and limitations of its application. Some characteristics are: ACCURACY, RE-SPONSE TIME, TEMPERATURE RANGE, RELIABILITY and SYSTEM COST. Let's describe the thermocouples in two classifications: THERMOCOUPLES OF THE PAST and THERMO-COUPLES OF THE PRESENT.

Thermocouples of the Past

Thermocouples of the past tended to be fairly crude and simple devices. They consisted of two thermocouple elements twisted together and butt welded. Ceramic beads were used as insulating material and connected to a ceramic terminal block. These sensors usually were poked through a hole in the side of a process and into the heat chamber. So much for Thermal Engineering. This style of thermocouple is still being used today for its low cost. What many people still don't realize is that these beaded thermocouples have many more disadvantages than advantages.

ADVANTAGE

Easy to manufacture and low cost. •

DISADVANTAGE

- Can not be exposed directly into process. ٠
- Rapid oxidation of conductors (Type J).
- Rapid carbide precipitation or green rot (Type K).
- Slow response time.
- Narrow design capabilities.
- Poor reliability.

Thermocouples of the Present

About 55 years ago a new method was developed by encapsulating the same matched thermocouple elements inside of stainless steel or nickel based alloy tubing and using mineral insulation, often high purity MgO. This major innovation is widely used today. Thanks to this method, a thermocouple can be constructed to be inserted directly into the process and be able to withstand the attacks of corrosive environments, high temperatures and mechanical damage from shock or movement. They can also be adapted to difficult process conditions such as pressure sensitive and/or hazardous explosive environments. This form of thermocouple can be made in a wide variety of diameters from .010" to .500" and also a wide variety of sheath materials. This allows a wide design capability that can be tailored to any application.

CRITERION	METAL SHEATHED	CERAMIC BEADED
Self-environment protected	Yes	No
Manufacturing	Needs special tools and tech.	Easy
Response Time	Fast	Slow
Flexibility	Yes	No
Shielding	Yes	No
Design capability	Wide	Narrow
Thermal Shock	Yes	No
Reliability	Yes	No
Cost	Higher	Lower
Accessory Hardware	Vast	Minimal

vison of Deceled VC Cheeth

MGO Thermocouple Assemblies

Exhaust Gas Technologies' modern facilities and experienced technicians assure a quality product resulting in longer thermocouple life combined with reliability and accuracy. EGT thermocouple assemblies consist of thermocouple elements embedded in hard-packed magnesium oxide mineral insulation and encased in a metal sheath.

EGT thermocouples meet ANSI MC96-1 specifications. INSU-LATION: The insulation used is high purity Magnesia (98% + MgO) for industrial grade and high purity Magnesia (99.4% + MgO) in standard grade. During the manufacturing process, the insulation is highly compacted, which excludes air from the sheath, retards moisture absorption and prevents "powdering out". The high degree of compaction achieved also ensures high thermal conductivity and maximum dielectric strength.

When ordering thermocouples and/or wire, be certain that the type (K, J, T, etc) corresponds to that of the instrument with which it will be used. This information can usually be found on the face of the instrument.

Measuring Junction Styles

Exposed Junction (E)

Thermocouple wires are butt welded. Insulation is sealed against liquid or gas penetration.

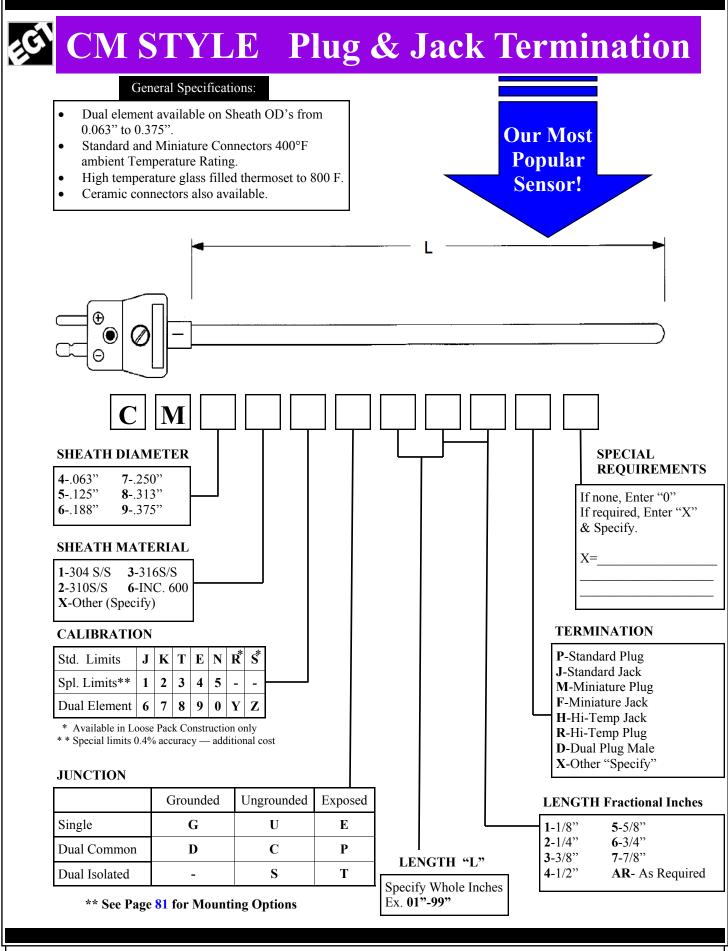
Recommended where fast response is desired and corrosive conditions are non -existent.

Grounded Junction (G)

End is welded, with the wires welded securely into the closure end of the sheath, becoming an integral part of the weld. Recommended in presence of liquids, moisture, gas or high pressure. The wire is protected from corrosive or erosive conditions.

Ungrounded Junction (U)

Thermocouple junction is fully insulated from welded sheath end.


Excellent for electrical applications that stray emf's would affect the reading and for frequent / rapid temperature cycling.

Sheath Materials:

Virtually any malleable metal can be used as sheath material. Some of the more commonly used materials and their maximum continuous operating temperature in an oxidizing atmosphere are:

Inconel 600*	+2100°F (1149 °C)
304 Stainless Steel	+1650°F (899 °C)
310 Stainless Steel	+2100°F (1149 °C)
316 Stainless Steel	+1700°F (927 °C)
*Trade name of International Nickel Co.	

Tables on the following pages should be used to assist in the selection of sheath materials, calibrations and junction styles that are in stock and ready for immediate manufacturing. For additional information and technical assistance, consult our factory.

CM STYLE Termination

Featuring plug or jack terminations, Style CM thermocouples can be quickly connected or disconnected. Besides saving time, this style offers advantages including low profile for insertion in hard to reach locations, assembly of circuits by inexperienced personnel using non-reversible connectors and ASTM 230 color coding specifications so you can easily determine the calibration.

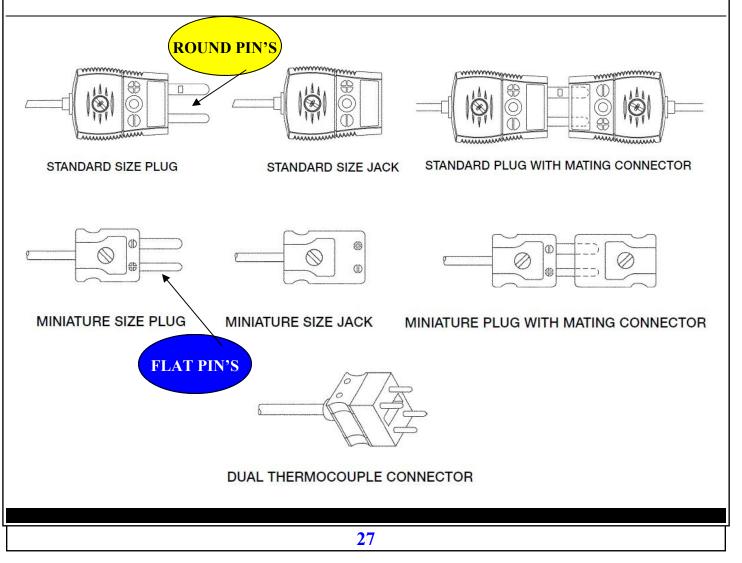
On all CM Style thermocouples except ASTM 230 Type R and S, the pins and contacts are of the same alloy as the thermocouple, resulting in higher accuracy. This technique eliminates errors due to temperature gradients across the connector. Type R and S connectors have compensating alloys.

Features

■ Plugs and Jacks are easy to connect and disconnect, saving you time.

• ASTM color-coded connectors allow quick identification of the thermocouple calibration.

• Miniature connectors available with thermocouple diameters up to 0.125" (metric size 3.0mm) can be used in locations where space is minimal. The miniature plug permits quick connection to portable instrumentation.


■ Matching thermocouple alloys provide higher accuracy.

• A Mounting Adapter assures the connector is mounted rigidly to the sheath, preventing the connector from turning or twisting, causing shorted sensors.

Performance Capabilities

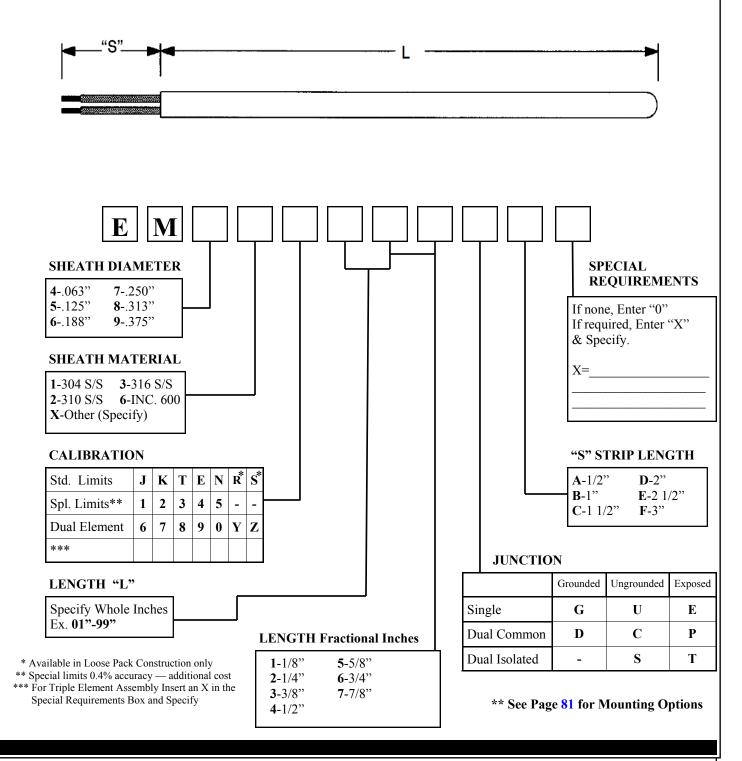
■ Ambient rating of 400 °F (200 °C) on standard and miniature connectors.

■ High temperature connectors perform to 1000 °F (540 °C)

EM STYLE

Cut & Strip

Features:


- Fast delivery
- Standard sheaths

.

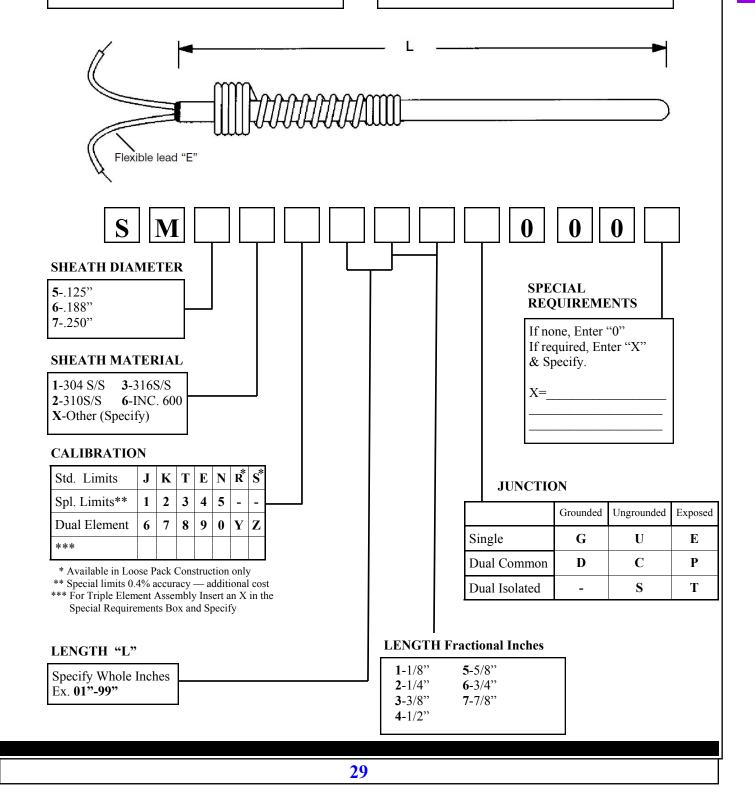
• T/C material protected by sheath

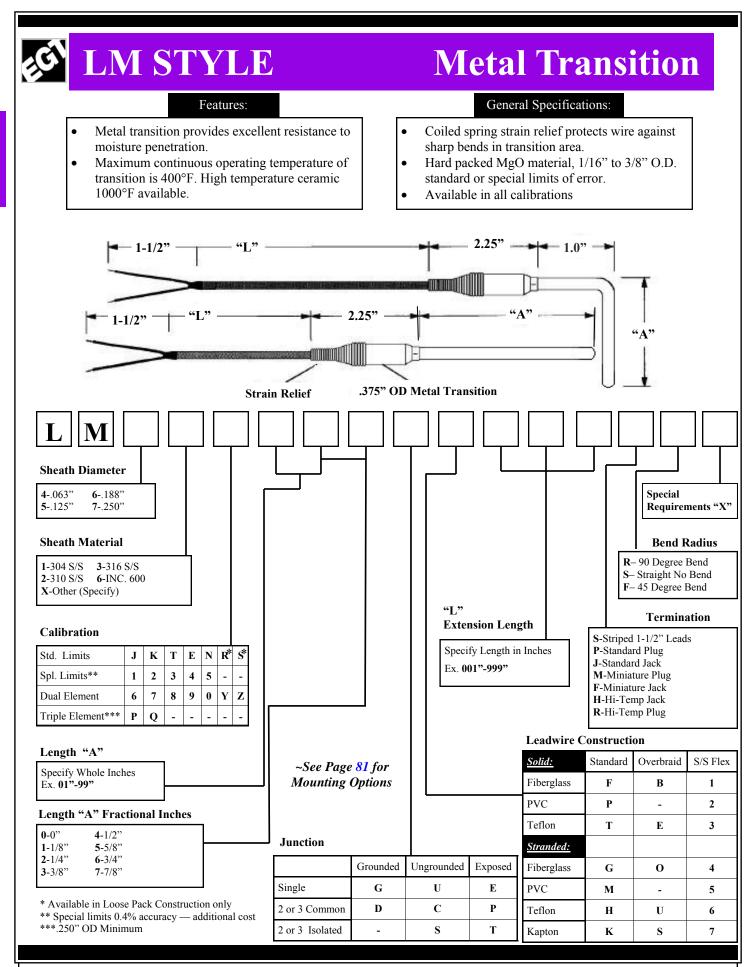
General Specifications:

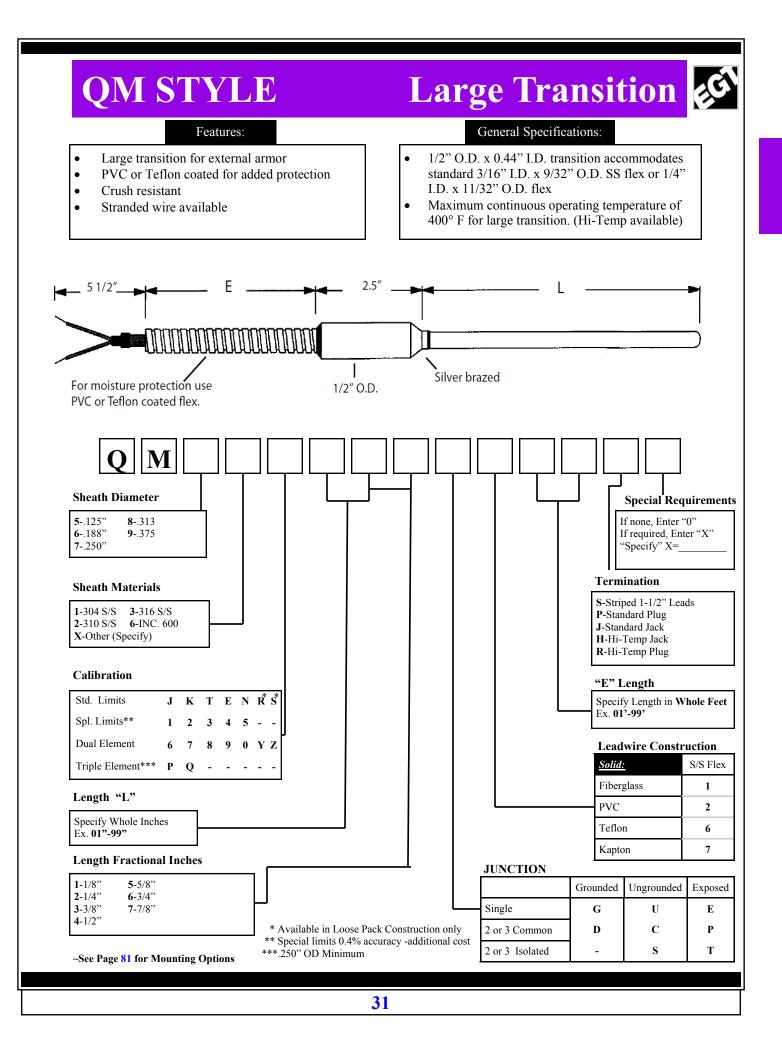
- Available in standard or special limits (99.6%) MgO.
- Can be supplied with 0.063" to 0.375" dia. sheath.

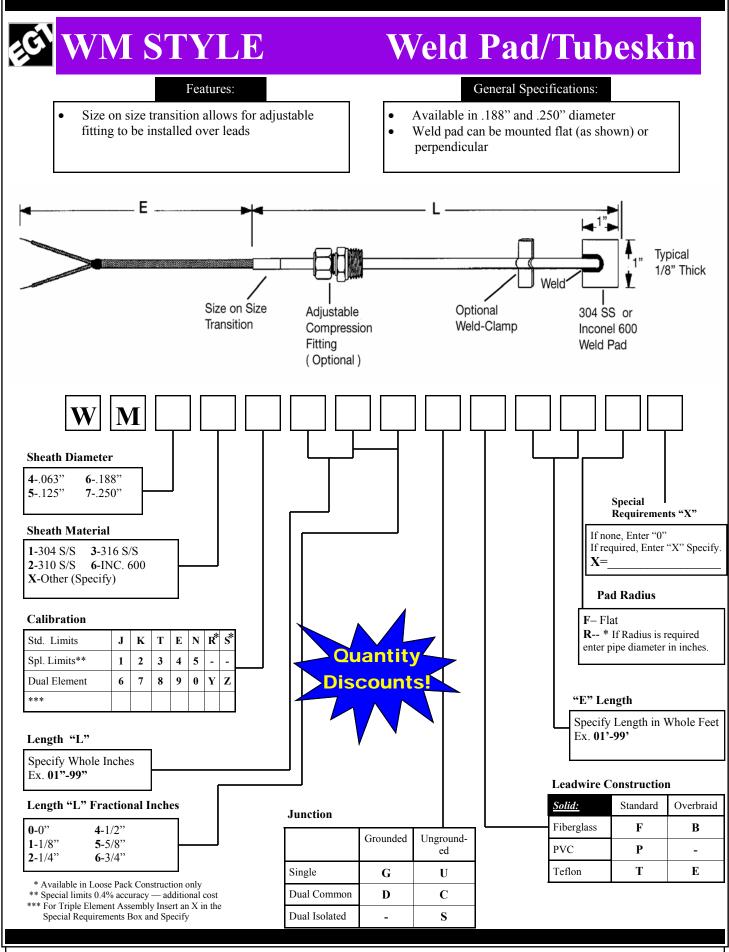
SM STYLE

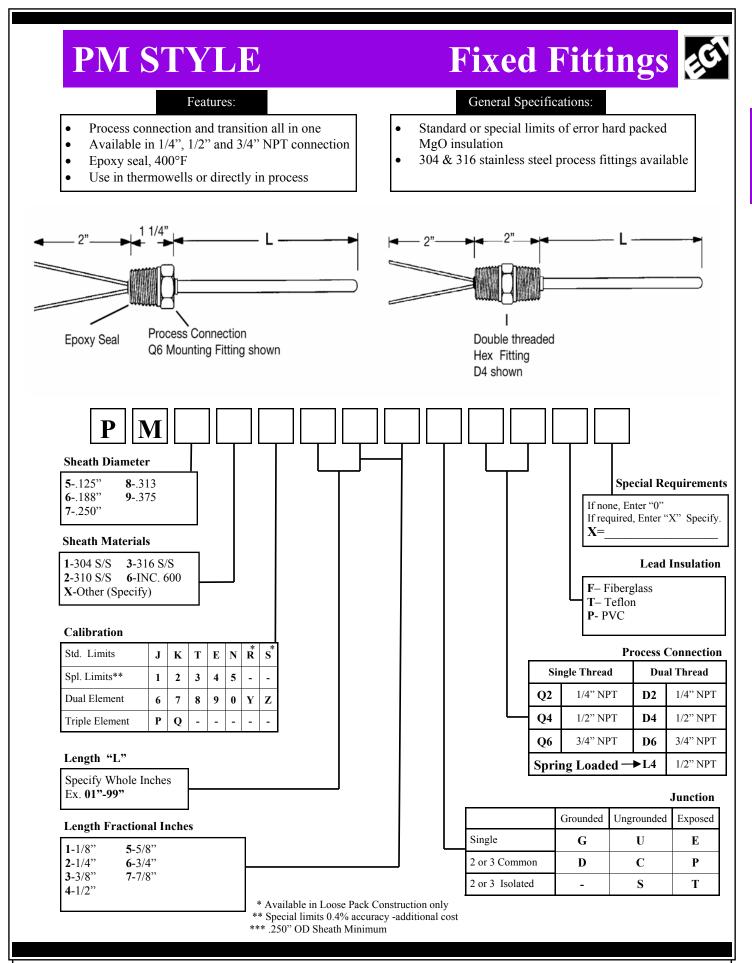
Spring Loaded

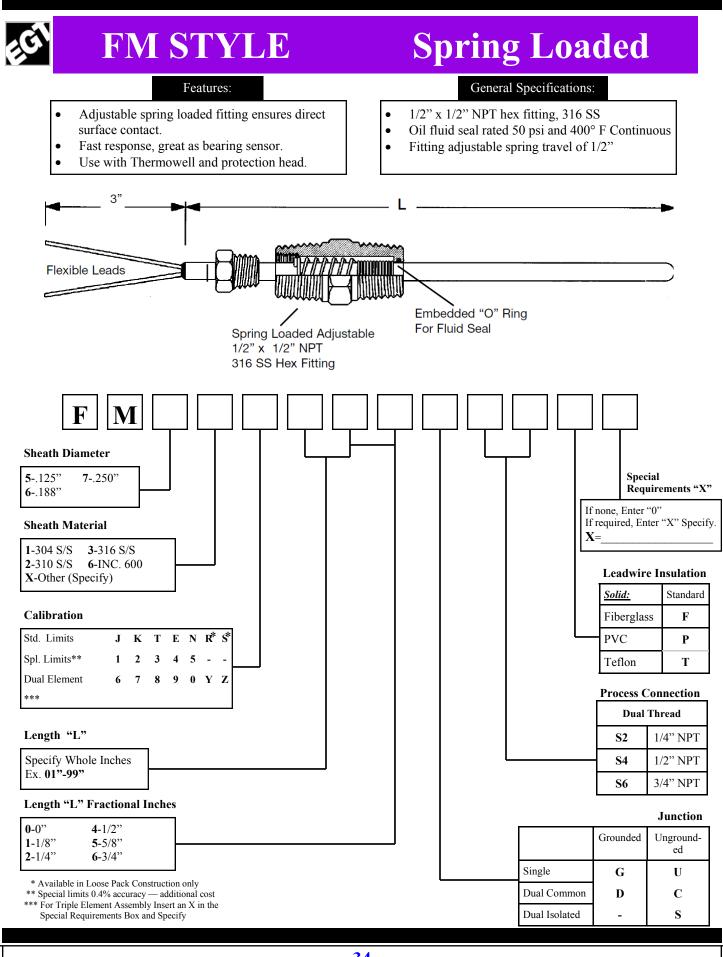

General Specifications:


- Spring loaded assures contact with bottom of • well
- "E" length is flexible lead to allow for expansion • of well, 3" standard length

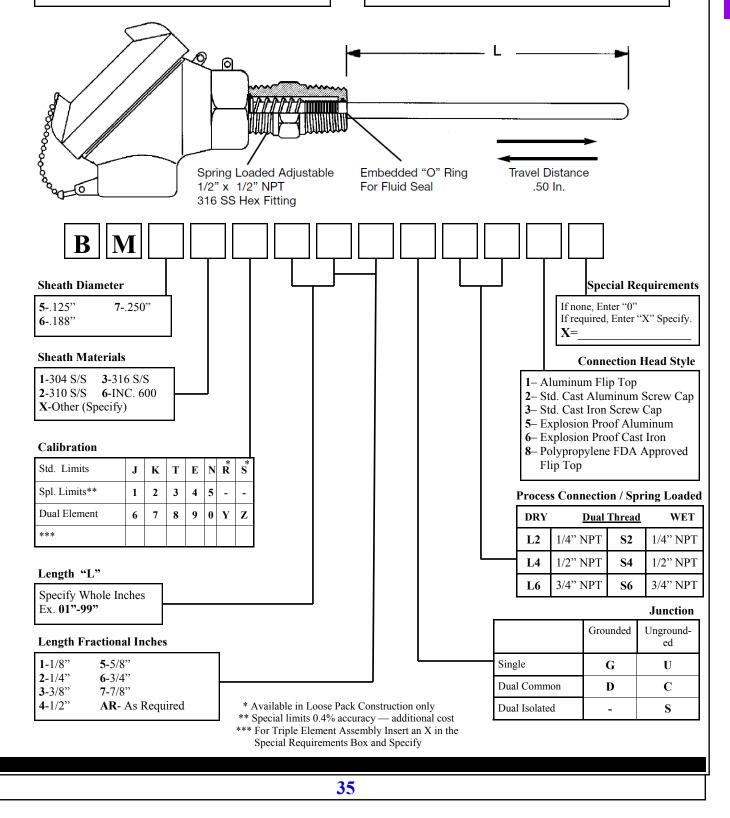

Features:


Spring is adjustable

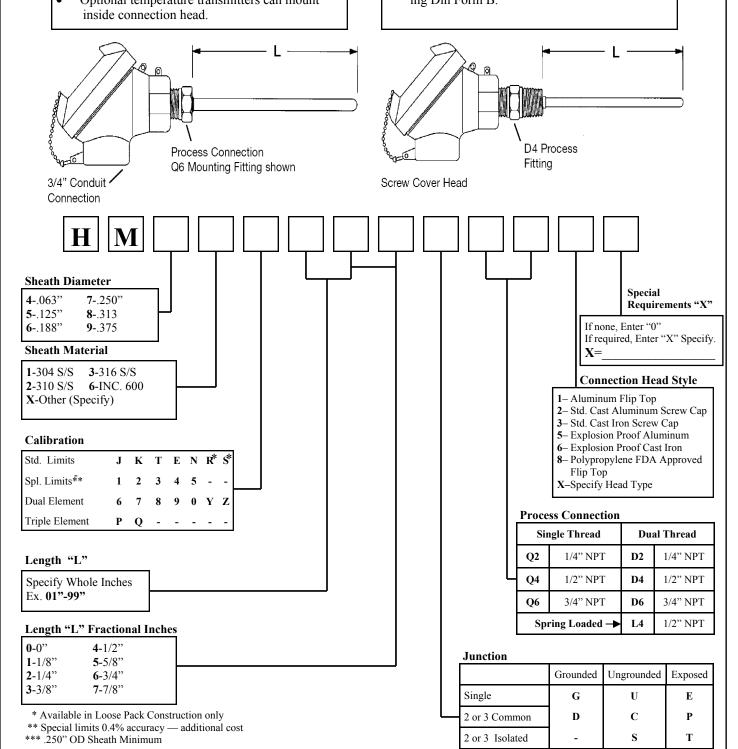

- Standard or special limits of error -•
- Hardpack MgO insulation
- Available in 1/8", 3/16" or 1/4" O.D. •
- High temp spring



BM STYLE


Fixed Fittings

Features:


- Adjustable spring loaded fitting ensures direct . surface contact
- Fast response, great as bearing sensor •
- Use with well and protection head

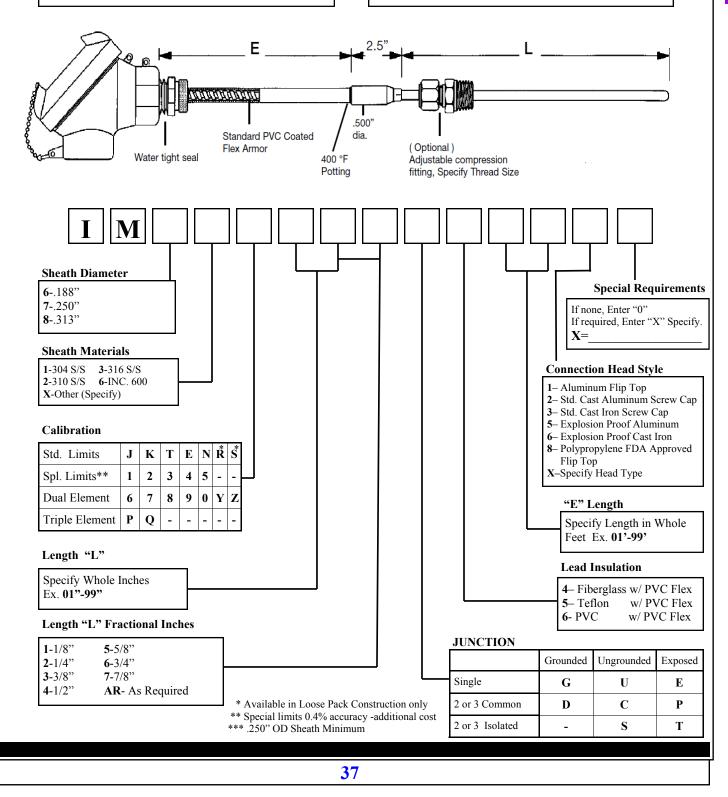
- General Specifications:
- 1/2" x 1/2" NPT hex fitting, 316 SS
- Oil fluid seal rated 50 psi and 400° F Continuous
- Fitting adjustable spring travel of 1/2" •

•

HM STYLE Head Termination Features: General Specifications: Sheath diameter available from .063" to .375". Connection heads provide superior dust and . moisture resistance, NEMA 4 rated. Hex fittings are made of 304 or 316 stainless • Heads are available in Aluminum, Cast Iron, S/S steel. . Explosion proof and Polypropylene. Wide Selection of head mounting styles, includ-• Optional temperature transmitters can mount ing Din Form B. •

36

IM STYLE


Industrial Remote 🧬

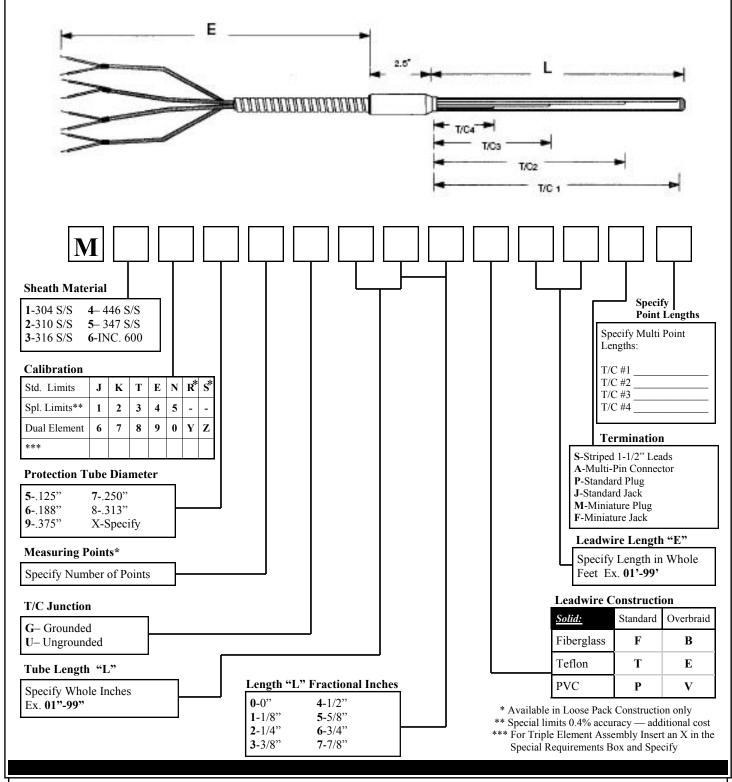
Features:

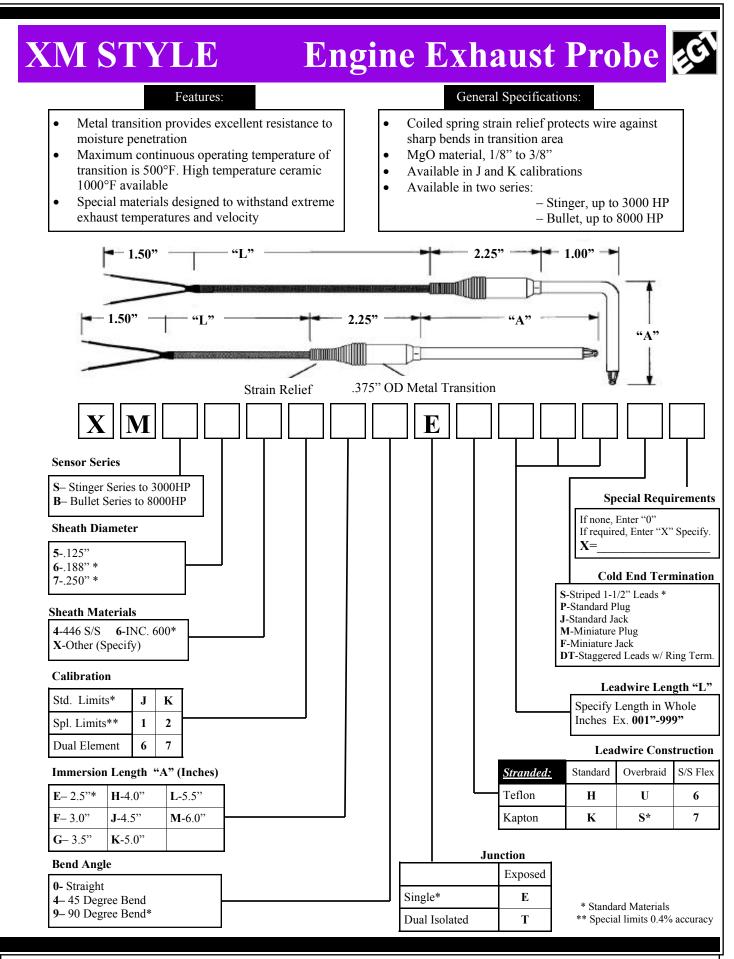
- Remote mounting, protects against excessive • heat and vibration
- PVC covered Flex armor protects leads from . moisture
- Compression fitting, for mounting in thermowell

General Specifications:

- Available in diameters, .063" to .375" •
- 16 AWG lead wire •
- Flex armor available in plain SS, PVC or Teflon® • coating

M STYLE


Multipoint Type T/C


Features:

 Multipoint sensor is designed for accurately measuring temperature at various locations along its length

General Specifications:

- Individual sensors are mineral insulated
- Variety of terminations available

SECTION 3 RTD Assemblies Resistive Temperature Detectors

RTD RESISTIVE TEMPERATURE DETECTORS

An RTD sensing element consists of a wire coil or deposited film of pure metal. The element's resistance increases with temperature in a known and repeatable manner. RTD's exhibit excellent accuracy over a wide temperature range and represent the fastest growing segment among industrial temperature sensors.

Their advantages include:

- Temperature Range: Models in this catalog cover temperatures from -320 to 1220° F (-196 to 660° C).
- Repeatability and Stability.
- Sensitivity: the voltage drop across an RTD provides a much larger output than a thermocouple.
- Linearity: Platinum and copper RTD's produce a more linear response than thermocouples or thermistors. RTD non linearities can be corrected through proper design of resistive bridge networks.
- Low system cost: RTD's use ordinary copper extension leads and require no cold junction compensation.
- Standardization: Manufacturers offer RTD's to industry standard curves, most commonly 100Ω platinum with a Temperature Coefficient of Resistance of 0.00385 Ω/Ω/ °C in three tolerance classes (class A: W 0.15% @ 0 °C, class B: W 0.3% @ 0 °C, 1/3 Class B, W 0.1% @ 0 C)

Wire Wound Element

The standard RTD element used in EGT's probe assemblies are made of 99.99% pure platinum wire wound about a ceramic or glass capsule. Platinum wire was chosen as it best meets the needs of precision thermometry. It resists contamination, can be highly refined and is mechanically and electrically stable. This provides for close interchangeability between elements with negligible drift or error with age. On special request, EGT can make available RTD elements made with other wire materials.

Thin Film Element

Made by platinum being deposited as a film on a substrate and then encapsulated. This method allows for the production of small, fast response, accurate sensors.

Insulation Resistance (IR) and Characteristics of RTD's

A high and stable insulation resistance is important for the accuracy of an RTD. Typically, at room temperature insulation resistance of at least 100 megohm with 100 VDC applied between any RTD lead and the sheath is desired. As the temperature increases, the insulation resistance decreases. It is important for the insulation resistance to be much greater than that of the RTD element. A cause of RTD degradation is failure of the insulation resistance due to moisture intrusion in the sheath. A low insulation resistance causes the effective RTD resistance to be lower than normal and will result in a low temperature indication. For example, for a 100 ohm RTD operating at 300 °C, the indicated temperature will have a -0.001°C error if the insulation resistance is reduced to 1 megohm.

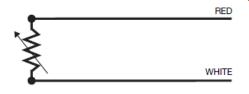
In some cases there has been a wide insulation resistance variation between RTD's that have been tested. These variations are probably due to differences in properties of the insulation materials used in different RTD's and the moisture content of the same. Inadequate or loose connections in an RTD circuit can also produce additional resistances and cause incorrect readings. Another effect of low insulation resistance due to moisture in the RTD is a noisy temperature signal.

Insulation Resistance requirements per ASTM E 1137 are as follows.

;	Applied DC V	oltage	Minimum Insulation Resistance		
	Min	Max	°C	Megohms	
	10	50	25 +/-5	100	
	10	50	300 +/- 10	10	
	10	50	650 +/- 15	2	

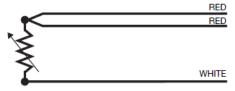
Insulation Resistance requirements per IEC 751 are the same with the exception of applied voltage increased to 100 VDC.

However this higher "Potential" does not improve anything except the Resolution.



RTD RESISTIVE TEMPERATURE DETECTORS

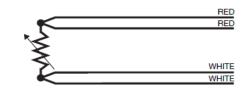
RTD Lead Configurations


Because an RTD is a resistance type sensor, resistance introduced by connecting extension wires between the RTD and control instrument will add to readings. Furthermore, this additional resistance is not consistent but increases with ambient temperature.

Style 1

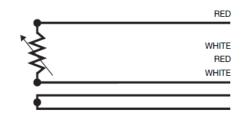
Lead configuration 1 provides one connection to each end of the sensor. This construction is suitable where the resistance of the run of the lead wire may be considered as an additive constant in the circuit, and particularly where the changes in lead resistance die to ambient temperature

Style 2 (Standard)


Lead configuration 2 provides one connection to one end and two to the other end of the sensor. Connected to an instrument designed to accept three wire input, compensation is achieved for lead resistance and temperature change in lead resistance. This is the most commonly used configuration.

Upper Temp.

You can reduce leadwire error by:


- Using larger gauge extension wires.
- Specifying an RTD with greater sensitivity.
- Employing a 3 or 4-wire resistance cancelling circuit.
- Using a 2-wire current transmitter.

Style 3

Lead configuration 3 provides two connections to each end of the sensor. this construction is used for measurements of the highest precision.

Style 4

Lead construction 4 is similar to Lead configuration 3 except that a separate pair of wires is provided as a loop to provide compensation for lead resistance ad ambient temperature changes in lead resistance.

Standard-Grade Thermocouple Standard DIN CRITERION ISA K Pt RTD ISA J Accuracy @ 0°C ±2.2°C ±2.2°C ±0.3°C ±2.2°C ±2.2°C 100°C ±0.5°C 500°C ±3.9°C ±3.9°C ±3.0°C Time Constant 1.7 sec.* 1.7 sec* 5.0 sec** **Tip Sensitive** Yes No yes

1300°C

Comparison of Thermocouples and Pt RTDs

* 1/4" OD Probe, Grounded Junction

870°C

** 1/4" OD Probe

800°C

RTD RESISTIVE TEMPERATURE DETECTORS

Description:

Resistive Temperature Detectors operate on the principle that the electrical resistance of a metal conductor changes as a function of temperature. RTD's provide an accurate, stable and repeatable means of absolute temperature measurement. The accuracy of an RTD may be independent of the distance between the sensor and the instrument, whether it be an indicator, recorder, controller or data logger computer. Copper hook-up wire is generally used between the sensor and instrument. EGT RTD probes consist of a platinum resistance element that is encapsulated and circuited in a mineral insulated, metal sheath construction and terminated by means of bare wire, quick connectors or terminal heads. This construction provides a rugged probe that is moisture, pressure, shock and vibration resistant and also is bendable up to the element area.

General Selection Parameters:

The conditions of measurement determine the type of RTD used. Temperature, atmosphere, protection, response and service life should be considered. The following descriptions serve as a guide to selection:

The Platinum Resistance Element:

Select the RTD element that will be capable of operating in your application range. The reference resistance (100 Ohms@ 0°C-typical) and temperature coefficient (Alpha of 0.00385- typical) must match the instrumentation in your system.

Tolerance of the RTD element:

A range of limits of error elements are available (0.1%-typical). See the tolerance section for definition. In general, the better the tolerance, the more expensive the thermometer.

Sheath Alloy:

Select a sheath alloy that will withstand the temperature and possible corrosiveness of your application. 316 SS is standard.

Probe Diameter:

Use the probe diameter that will withstand the rigors of your application but with minimal effect on it. Because the element can be broken if the sheath is bent in the element area, it is recommended that a minimum of 0.187" diameter thermometer be used. Smaller diameters are available on request.

Process Connections:

In order to attach and/or seal the thermometer in your application, you can use a fitting, or braze, weld or solder it in place.

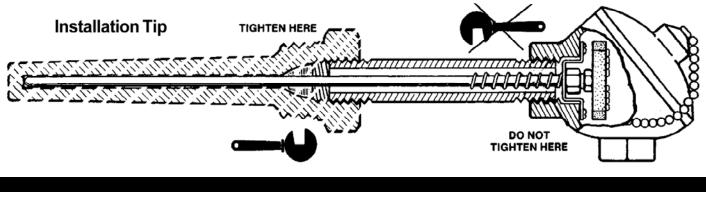
Terminal and/or Extension Type:

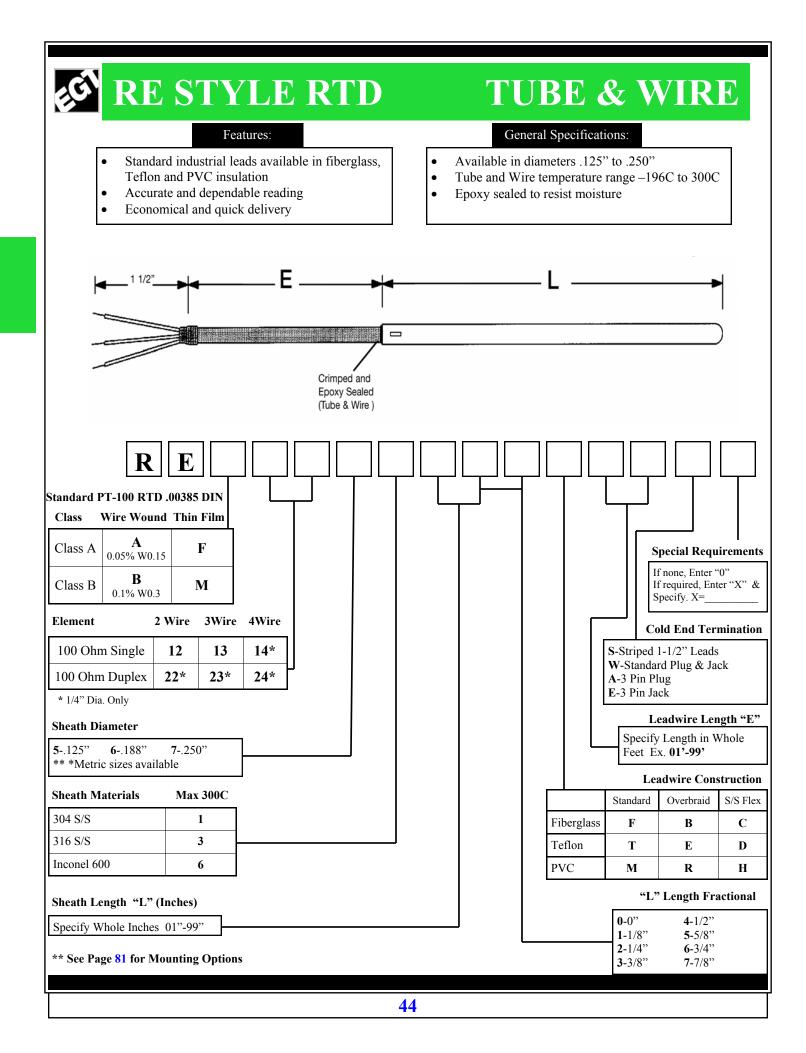
For connection to instruments, various termination extensions are available. Select the circuit that is required to match your instrumentation.

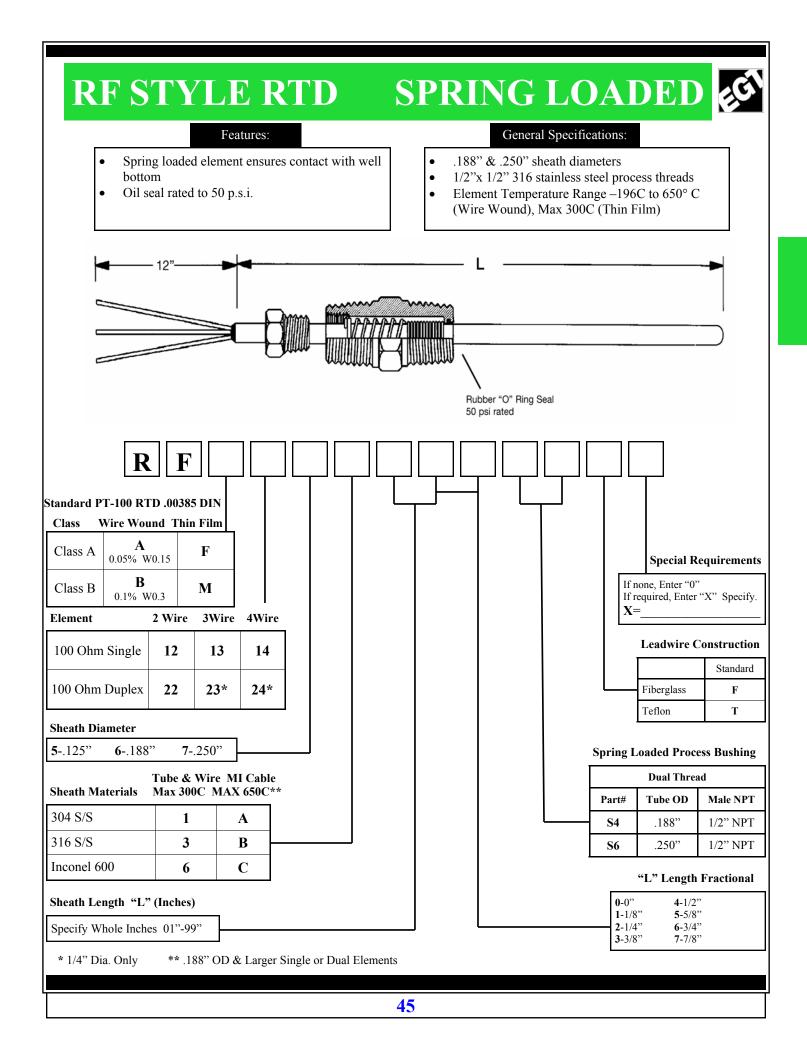
Calibration Tolerances for RTD:

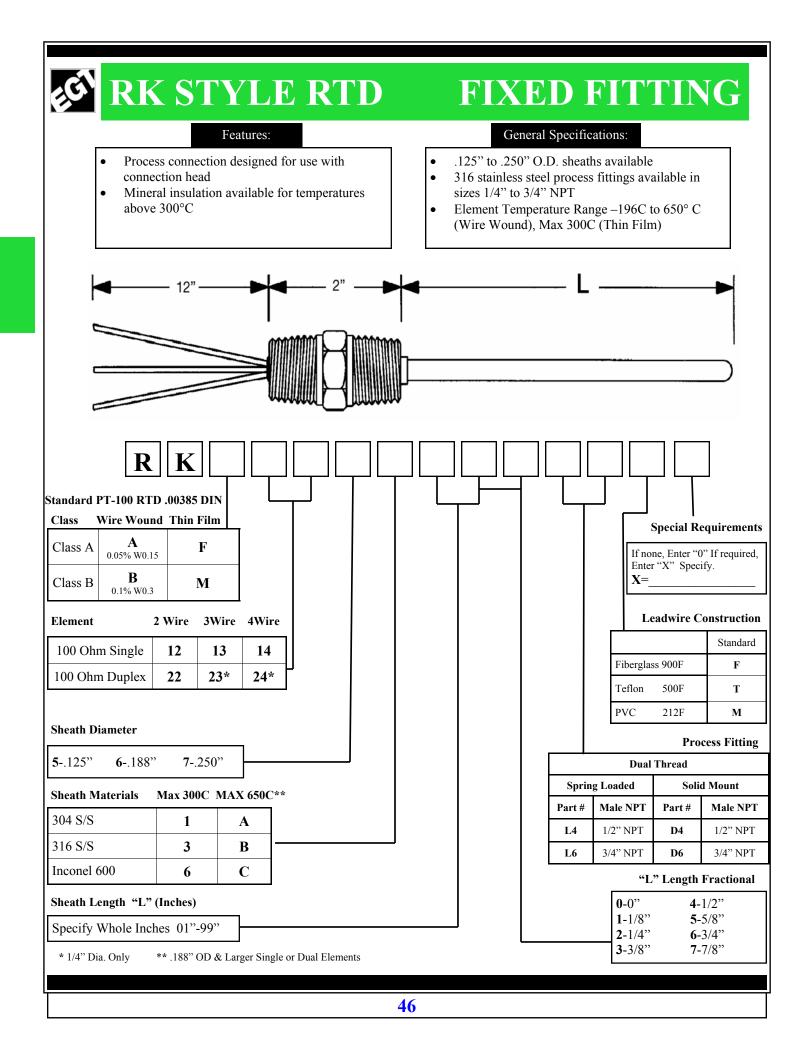
The designation of an RTD tolerance class is based on the percent allowable variation, in ohms, of the nominal resistance value at the reference temperature. However, for convenience, this ohmic tolerance is often expressed as an equivalent °C temperature variation.

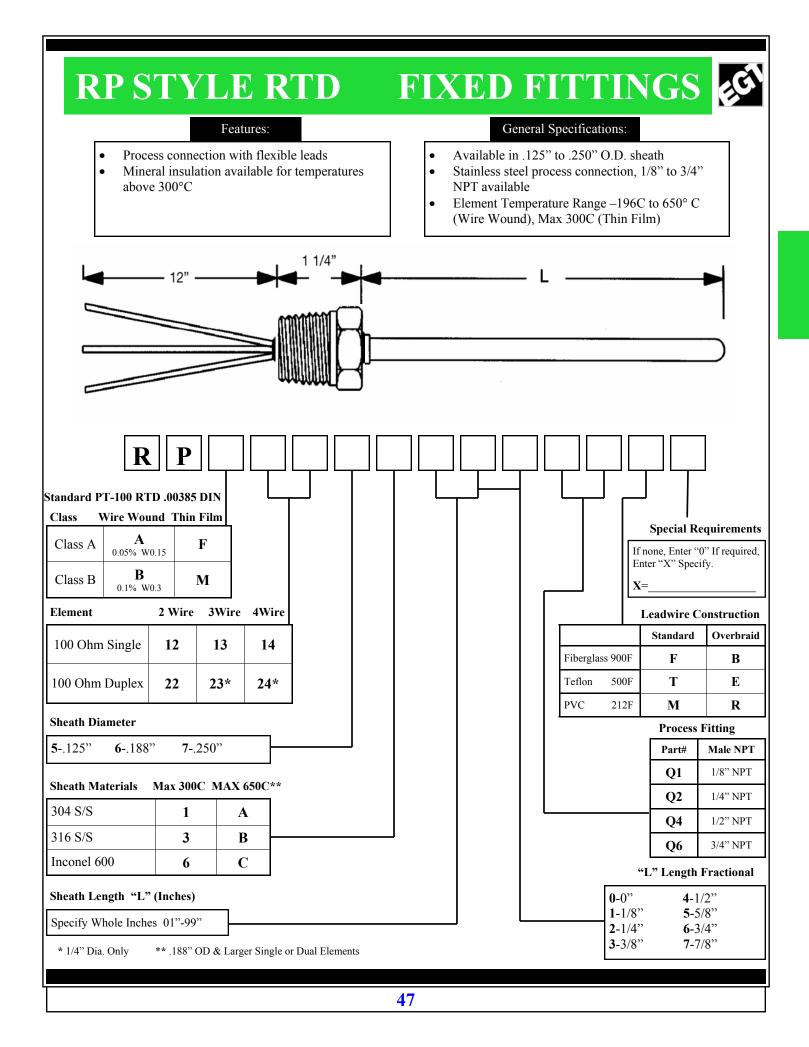
Installation:

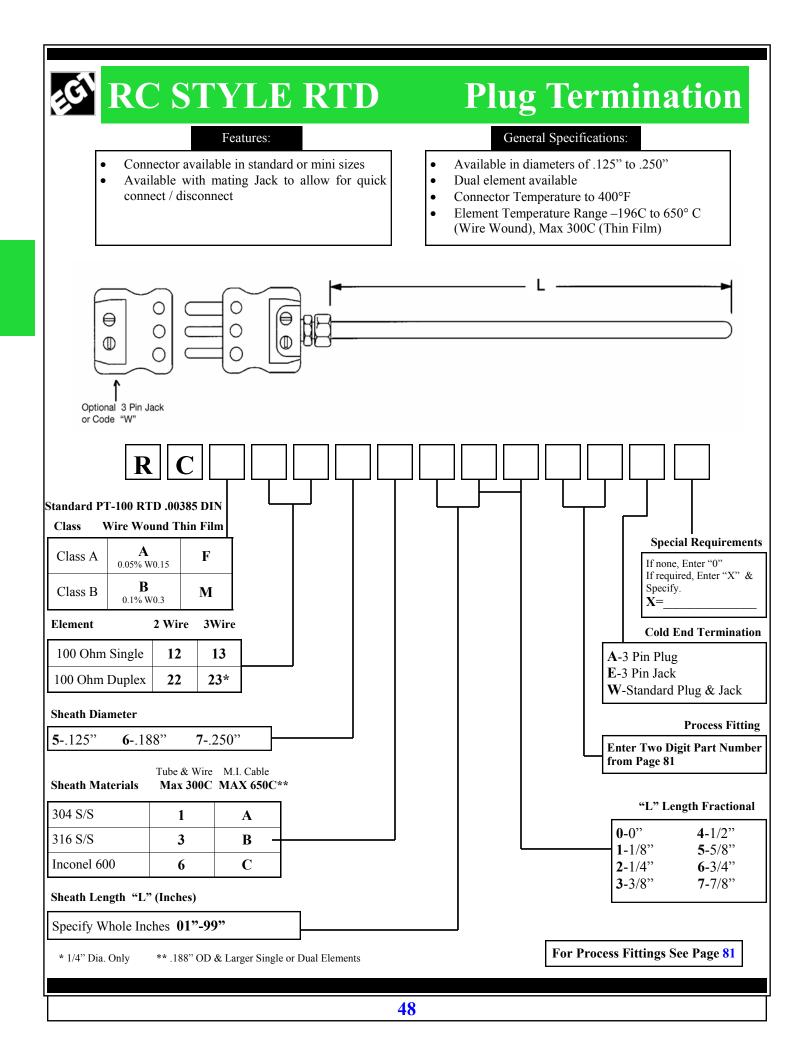

Do not attempt to mechanically connect the assembly into the process by tightening at the terminal or connecting head. Use only the process fitting or the thermowell flats for this purpose. Terminals or connecting heads that are twisted can be damaged or cause shorts that can adversely affect the operation of the RTD. Do not bend the RTD in the element area (within six inches of the end of the sheath). Bending will break the element that is in the metal sheath and the sensor will be rendered inoperative. If thermowell or protecting tube must be welded into the process, carefully remove RTD sensor before welding and be sure to handle carefully, keep clean and replace without forcing or stressing any components.

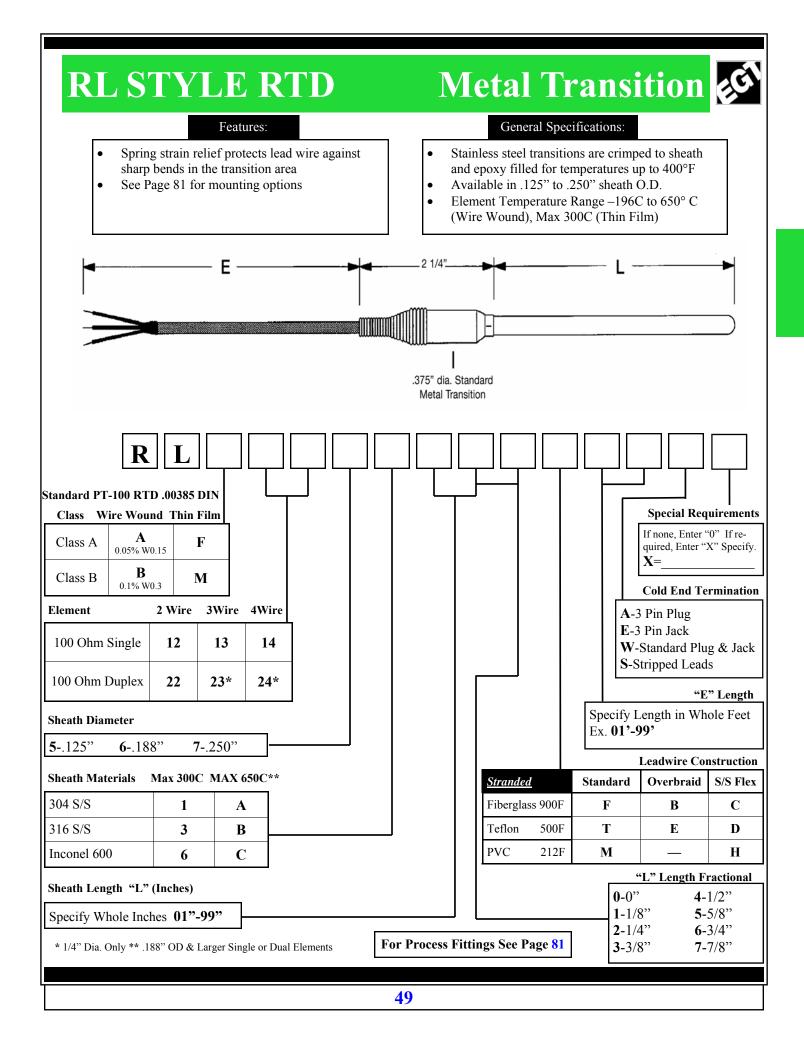

Wire Extension:

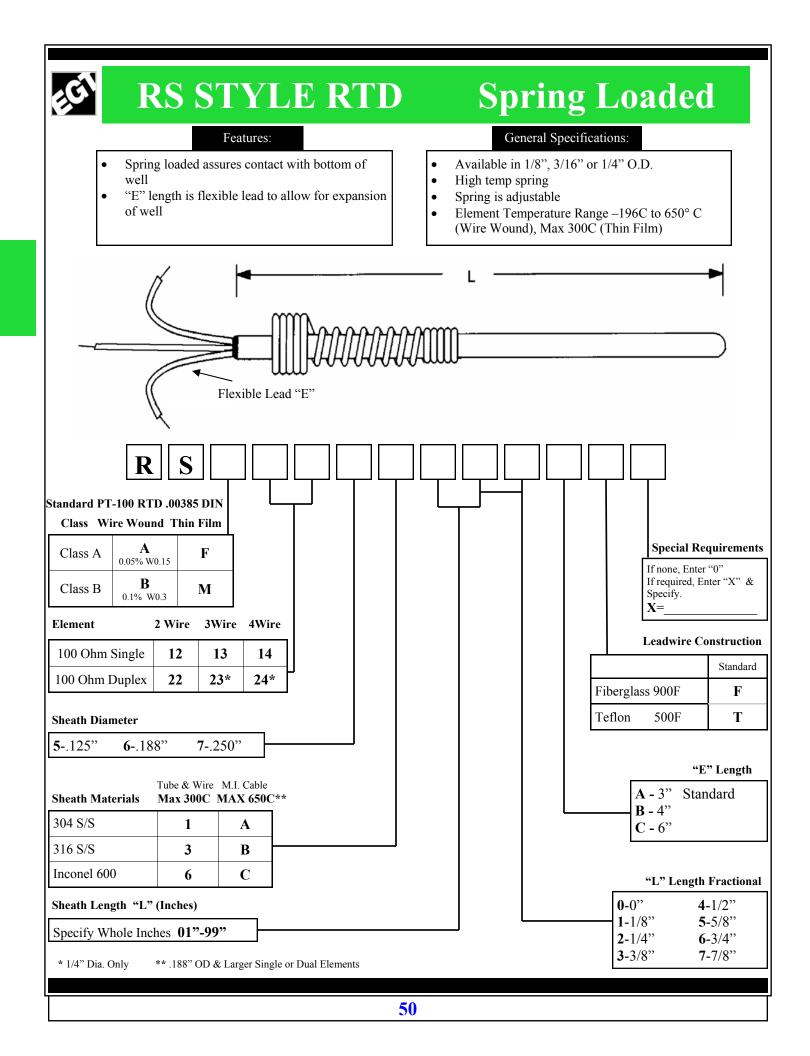

See general operation parameters and job wiring diagrams.

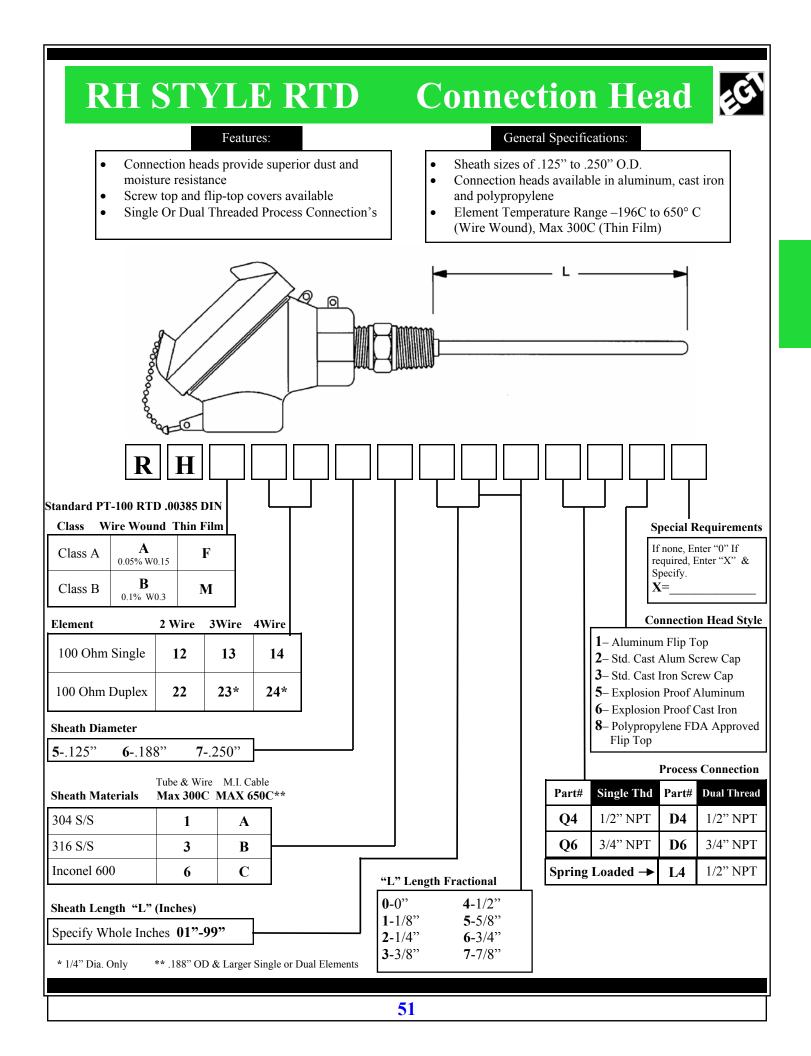

General Maintenance Parameters:

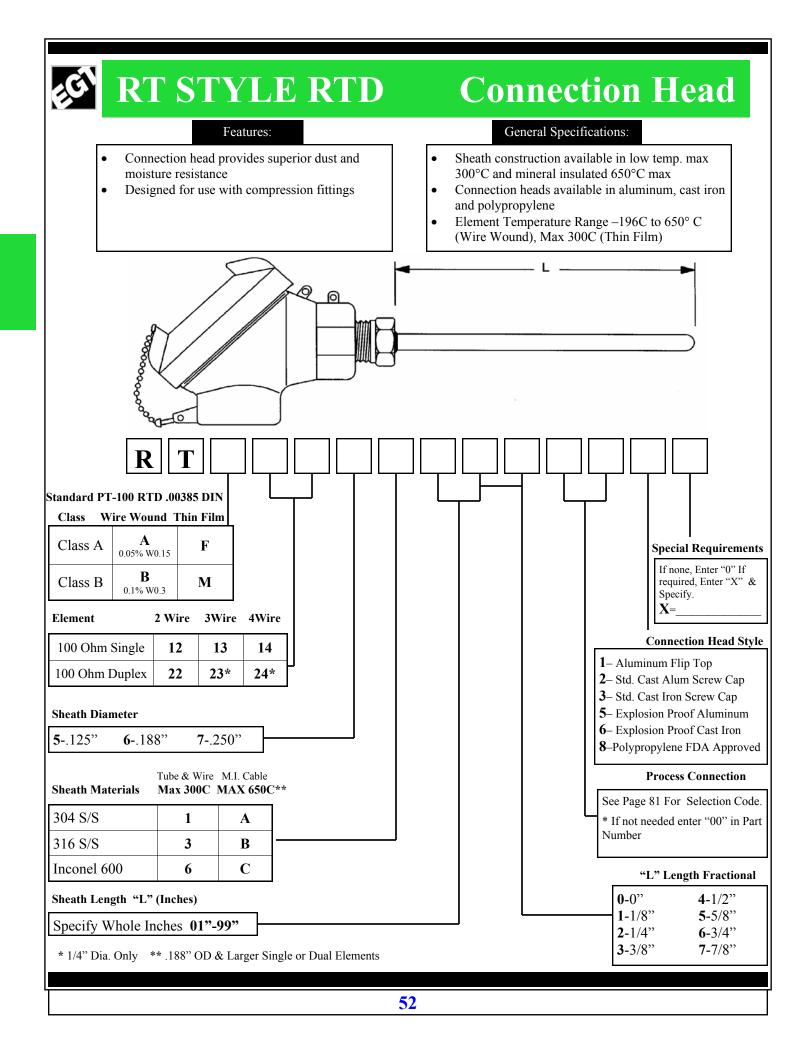

Regularly scheduled maintenance procedures should include inspection and calibration intervals so that life and reliability of the instrumentation is improved and the likelihood of sudden serious failure is reduced. These procedures should be set up by the responsible engineering department and performed by personnel that are familiar with the operating principles upon which the system is based. Do not lubricate.

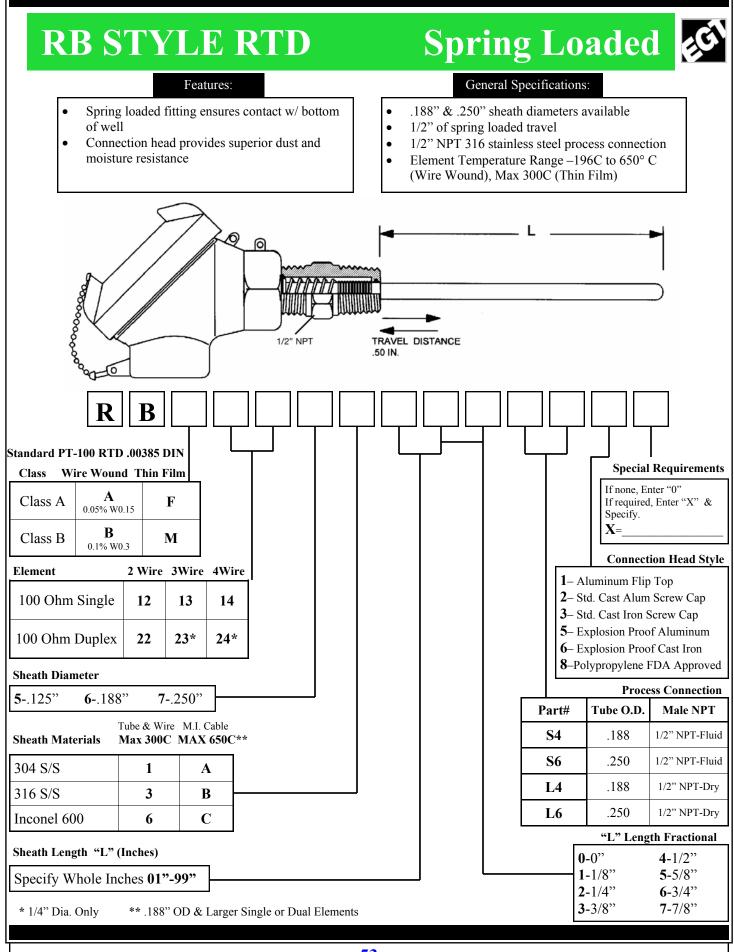


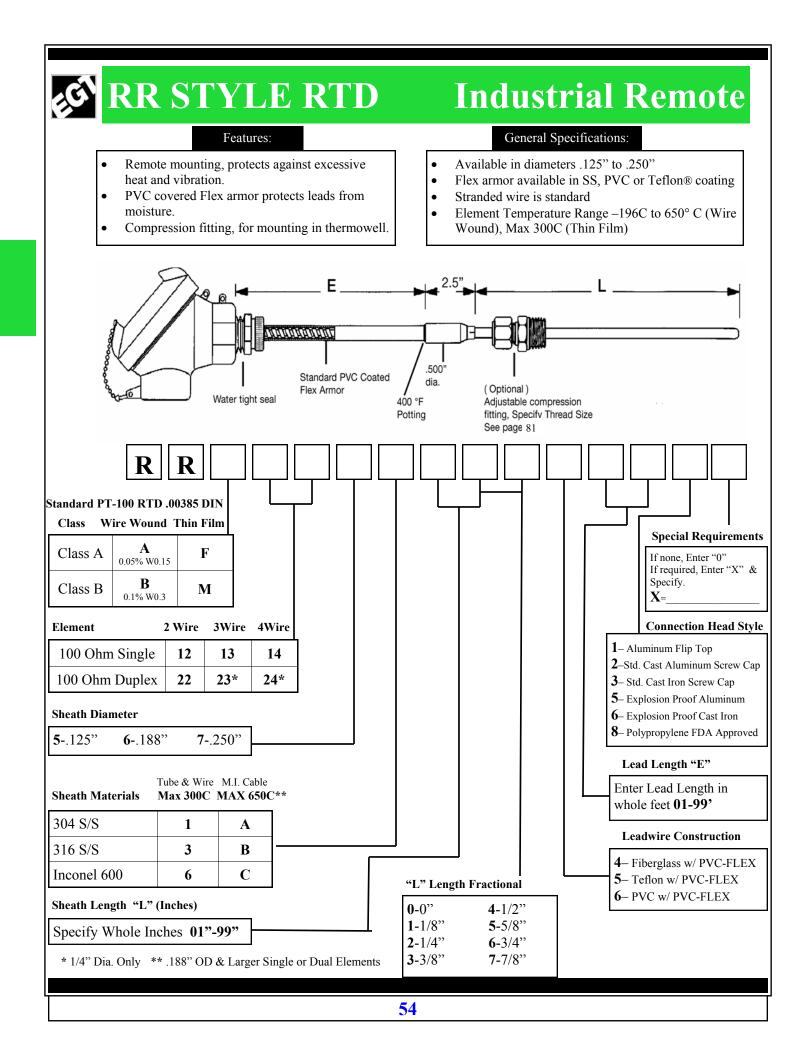


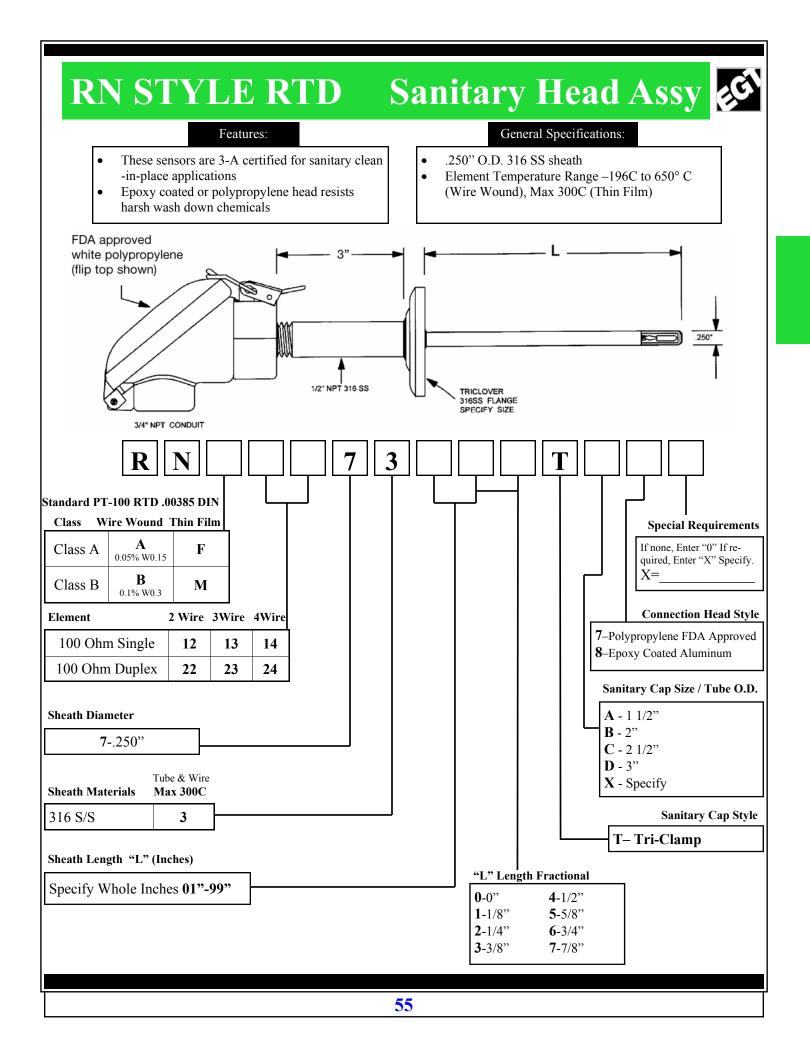


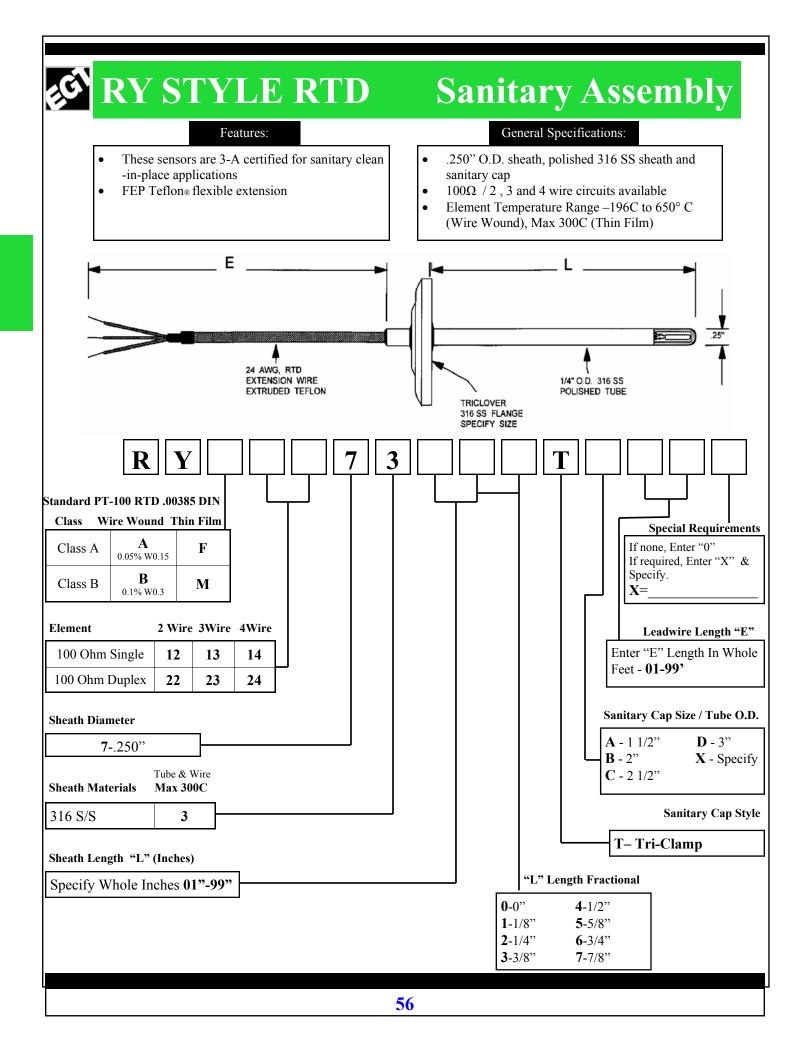












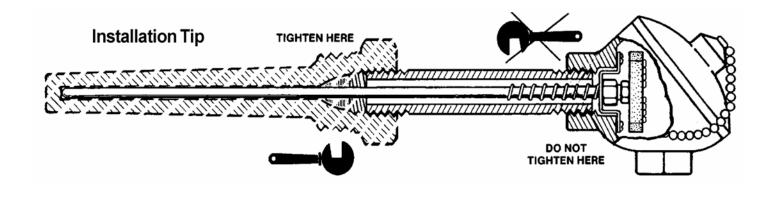
SECTION 4

Industrial Sensors

National Pipe Sizes VS Actual Sizes in Inches

Much confusion and anger has erupted over the years when customers place orders for Industrial sensor assemblies based on Actual Measurements vs National Pipe Thread measurements that are very common in Industrial Plants like steel mills and refinery's.

These facilities usually have many miles of piping runs to contend with, so naturally they think in the NPT sizes, which is our National Standard for pipe. The NPT size is closer to the inside dimension rather than the outside or OD dimension. As you stroll through this catalog you will notice we have listed all normal


diameter dimensions in thousandths of an inch (0.000"), and pipe size dimensions as NPT. We have also listed all the important pipe size conversions for your review. Please remember that if you are purchasing a pipe size assembly that requires a mounting thread, we can only supply a thread that is cut into the pipe itself. That is to say, you can only put a 1/2" NPT pipe thread on a 1/2" NPT pipe.

You can weld a bushing to the 1/2" NPT pipe but that bushing will have to be the next size larger or 3/4" NPT size in this case. If you get confused just give us a call.

Pipe Size NPT	pe Size NPT Threads Per Inch O.D. In		Pipe Size NPT	Threads Per Inch	O.D. In Inches
1/16	27	0.3125"	3/4	14	1.050"
1/8	27	0.405"	1	11	1.315"
1/4	18	0.540"	1-1/4	11	1.660"
3/8	18	0.675"	1-1/2	11	1.900"
1/2	14	0.840"	2	11	2.375"

Heavy Industrial Thermocouples:

Exhaust Gas Technologies offers a wide selection of industrial thermocouples and assemblies from which to choose. The most common are listed below. Should you not find your required assales agent for assistance. We manufacture specialty and one-of-a -kind assemblies on a daily basis. A detailed drawing or sketch is always appreciated and will speed the quotation process.

INDUSTRIAL SENSORS

General Selection Parameters:

The conditions of measurement determine the type of thermocouple used. Temperature, atmosphere, protection, response and service life should be considered. The following descriptions serve as a guide to selection:

Thermocouple Type:

Select the thermocouple type that will be capable of operating in your application's temperature range and be compatible with your instrumentation.

Protecting Tube:

Select material that will withstand the temperature and possible corrosiveness of your application. (See table below for T/C-Tube Compatibility and tube information. See pages 71 and 79 for Tube Characteristics.)

Tube Size:

Use the tube size that will withstand the rigors of your application but with minimal effect on it.

Fitting or Mounting Type:

To attach and/or seal the assembly in your application, use a flange or fixed fitting.

Terminal and/or Extension Type:

For connection to instruments, various terminations are available. General Installation Parameters:

The thermocouples should see, as closely as possible, what the product in the process is experiencing, in order to get meaningful measurements.

Location:

Locate the thermocouple junction as close to the product as possible. A rule of thumb is to have at least 10 tube diameters immersion in the hot zone. Avoid direct flame impingement of stagnant areas.

Special-Coated Wells and Protection Tubes:

Coated thermowells are recommended in applications of severe abrasion, corrosion, impact, high temperature and oxidation. The purpose of coated thermowells is to achieve longer thermowell life, better thermowell performance, and both hardness and strength. We offer coatings of Stellite* #1, Stellite* #6, chromium carbide, Teflon** and Kaynar†.

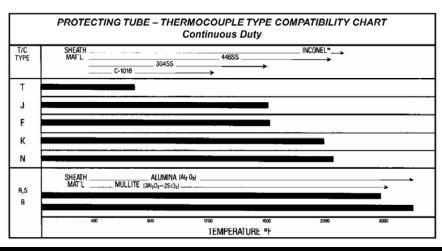
Wire Extension:

Pages 100-110 give general wire insulation characteristics; select the insulation that environmental conditions dictate. Use the correct thermocouple type through the circuit. Red color code is always negative in thermocouple circuits. Ideally, run the thermocouple circuit wires in separate conduits at least one foot away from power lines. Twisted and shielded constructions may be required to avoid noise in the thermocouple circuit. The overall impedance of the thermocouple circuit must be compatible with your instrumentation.

General Maintenance Parameters:

Thermocouples often deteriorate with time, exhibiting a drift from actual temperatures. Deterioration usually is more rapid at higher temperatures and depends upon the integrity of the protecting tube to isolate it from contaminates. Thermocouples should be checked at regular maintenance intervals based on recommendations or on experience.

Thermocouple DOs:


- Do check in place.
- Do replace at established, proper intervals.
- Do have good connections throughout the circuit.

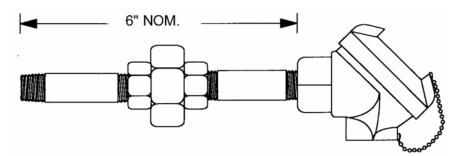
Thermocouple DO NOTs:

- Don't reinsert at different immersions. (Avoid decreasing the immersion.)
- Don't use for accurate measurements at lower temperatures after being exposed to higher temperatures.
- Don't use in defective protecting tubes.
- Don't insulate with used insulators.

If there is a reversal in the thermocouple circuit, the indication will be down scale. A double-reversal in the circuit will give an upscale but erroneous reading. Keep the red color-coded leg negative throughout the circuit to avoid these reversals.

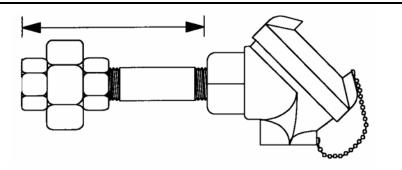
*Stellite is a trade name of Cabot Corporation. **Teflon is a registered trademark of E.I. du Pont Company. †Kaynar is a registered trademark of Pennwalt Corporation.

INDUSTRIAL ASSEMBLIES


Extension Assembly

The type of extension is dependent on the requirements and accessibility of your measuring point. Extensions allow for access to the element for easy replacement and as a barrier from direct heat.

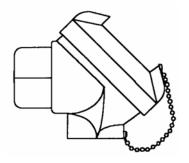
EGT offers the following assemblies:


Type 1 Nipple-Union-Nipple

A type one consists of 2 three inch nipples and a union for a nominal length of 6". This type allows for the easy removal of the head and element from the well.

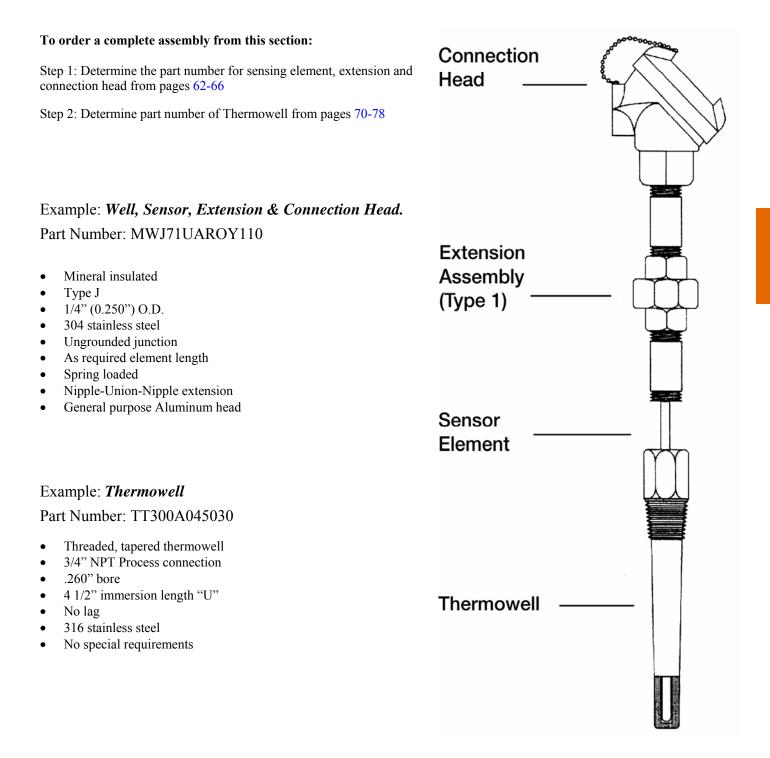
Type 2 Nipple-Union

A type two consists of 1 three inch nipple and a union for a nominal length of 4". This type is used to connect union and male pipe threads of protection tube.

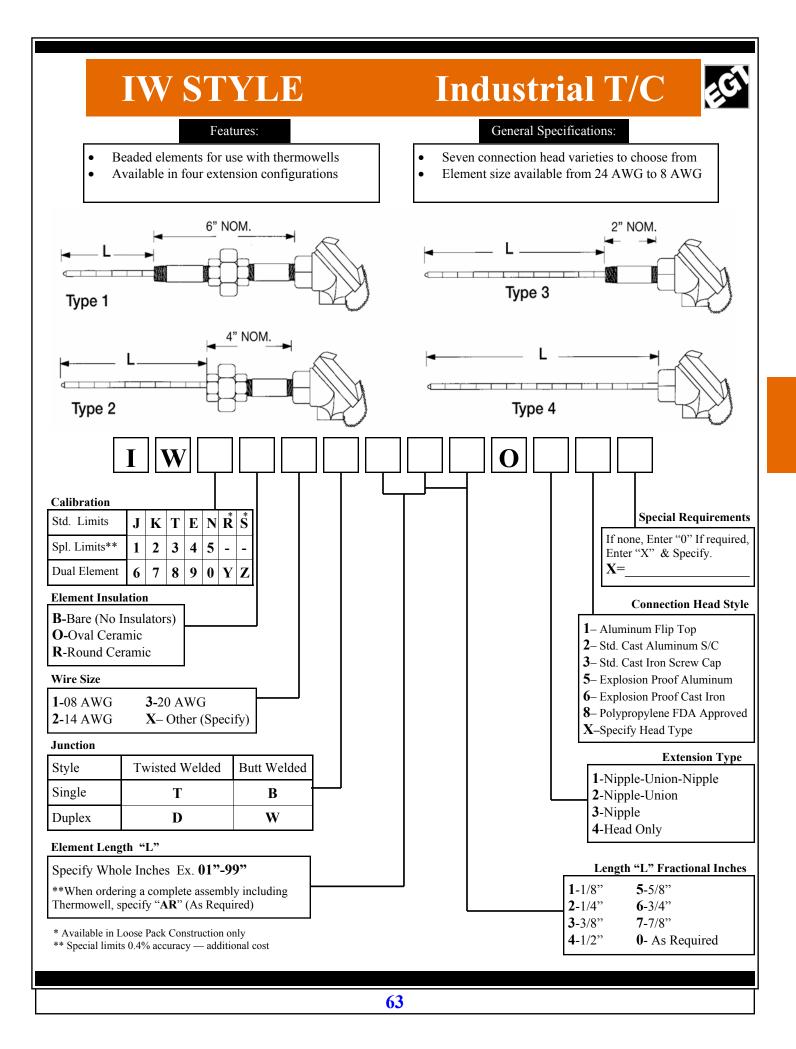


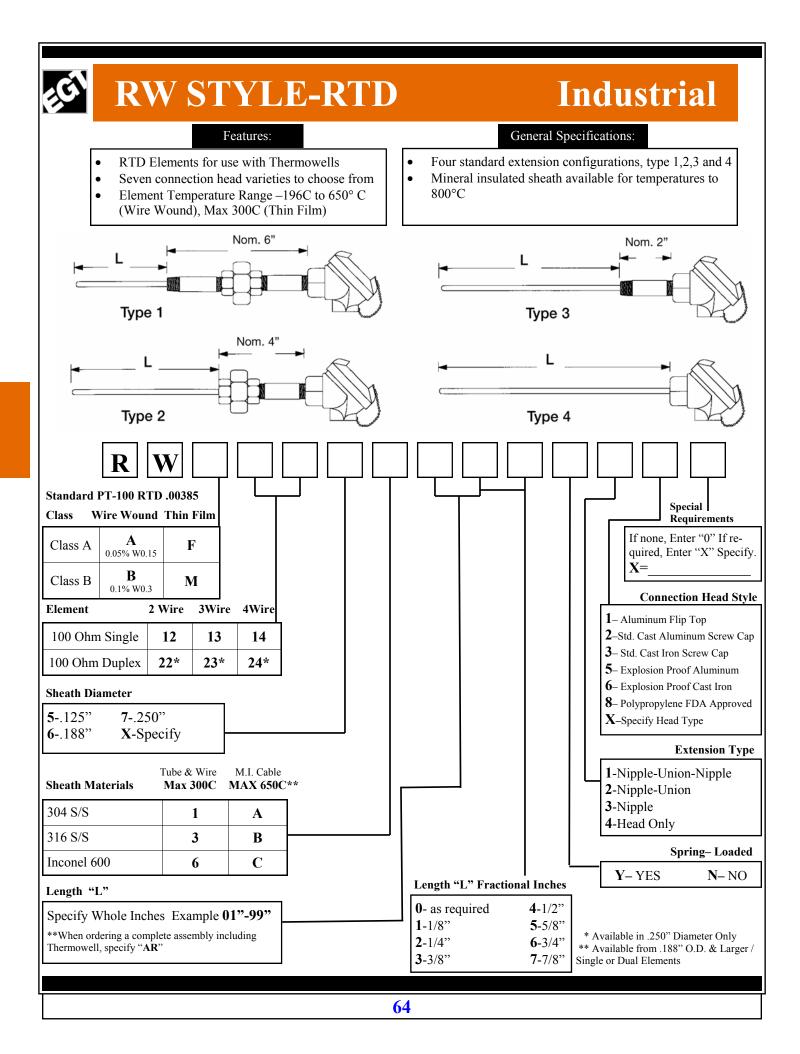
Type 3 Nipple

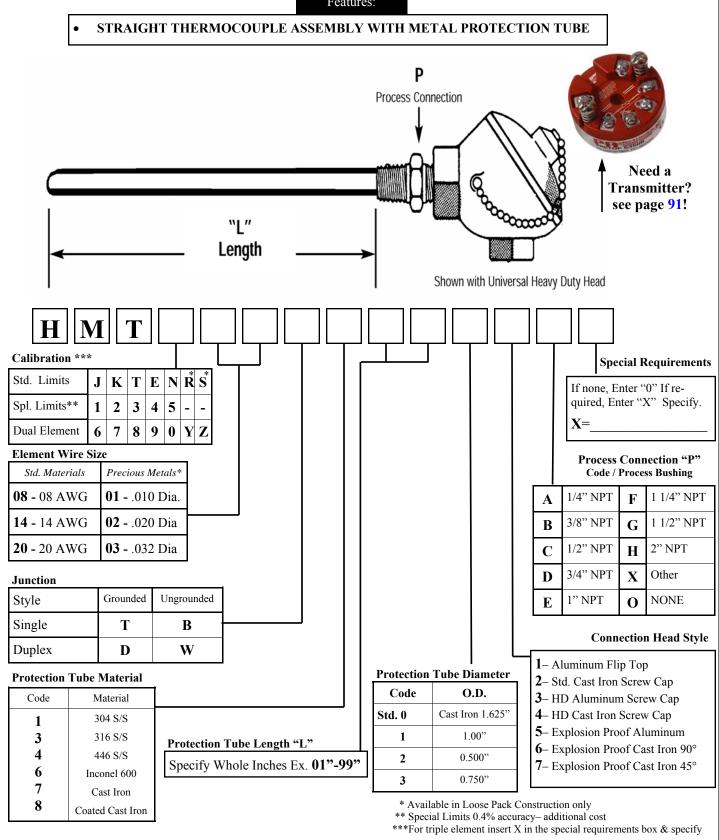
A type three consists of 1 three inch nipple for a nominal length of 2". This type is used to connect the head with the thermowell.


Type 4 Head


A type four is a connection head used to connect directly to protection tube.



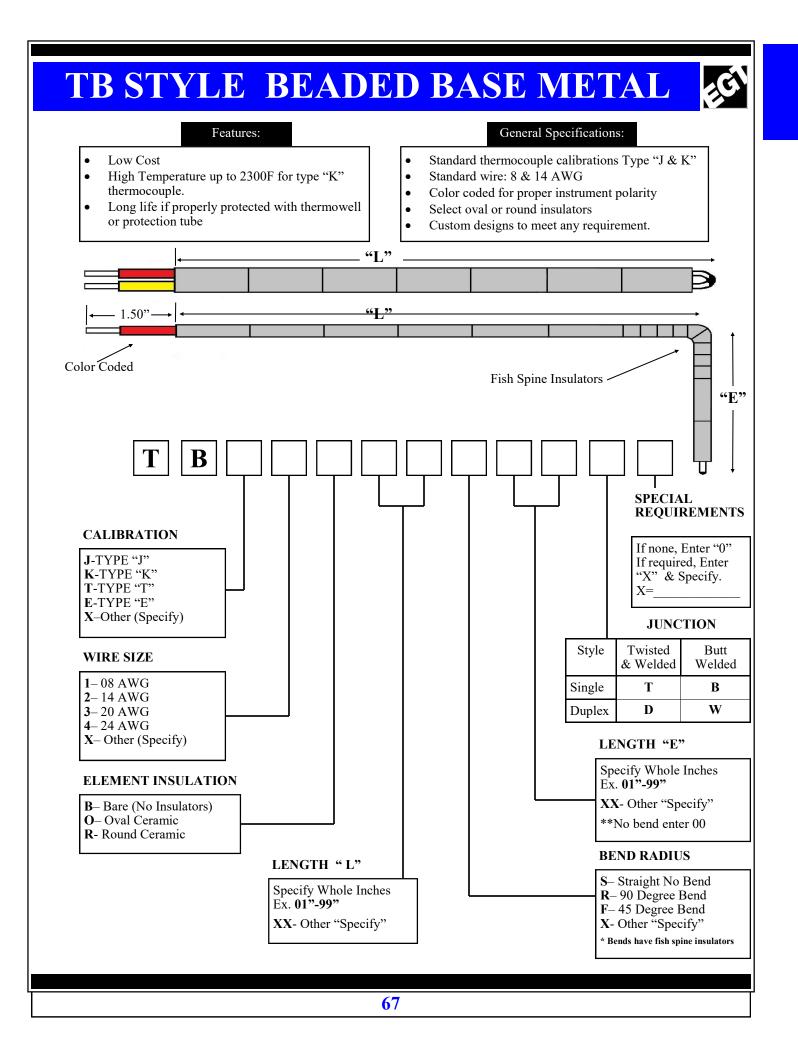

INDUSTRIAL ASSEMBLIES



HMT STYLE

T/C Assembly

<u>ي</u>



HCT STYLE

T/C Assembly

Features: STRAIGHT THERMOCOUPLE ASSEMBLY WITH CERAMIC PROTECTION TUBE Ρ **Process Connection** Need a **Transmitter?** see page 91! *"*۱" Length Shown with Universal Heavy Duty Head Η **Calibration** *** **Special Requirements** Std. Limits J Κ Т E Ν RS If none, Enter "0" If required, Enter "X" Specify. Spl. Limits** 1 2 3 4 5 _ X =**Dual Element** 7 8 9 0 6 Y **Process Connection "P"** Code / Process Bushing **Element Wire Size** 1/4" NPT 1 1/4" NPT F A Std. Materials Precious Metals* 3/8" NPT 1 1/2" NPT В G 08 - 08 AWG 01 - .010 Dia. 2" NPT 1/2" NPT С Η 14 - 14 AWG 02 - .020 Dia 3/4" NPT Other Х D 20 - 20 AWG 03 - .032 Dia XX-(Specify) Е 1" NPT NONE 0 **Junction Type Connection Head Style** Style Grounded Ungrounded 1- Aluminum Flip Top Single 2– Std. Cast Iron Screw Cap Т B **3**– HD Aluminum Screw Cap W Duplex D 4– HD Cast Iron Screw Cap 5– Explosion Proof Aluminum **Protection Tube Material** 6- Explosion Proof Cast Iron 90° Material Max. Temp Code **Protection Tube Diameter** 7– Explosion Proof Cast Iron 45° 3400F A Alumina Code I.D. x O.D. Code I.D. x O.D. Mullite 2750F 1/4" x 3/8" 7/16" x 11/16" Μ A D * Available in Loose Pack Construction only 5/16" x 7/16" 1/2" x 3/4" B Е **Protection Tube Length "L"** ** Special Limits 0.4% accuracy- additional cost *** For Triple Element Assembly Insert an X in 3/8" x 1/2" 3/4" x 1.0" С F Specify Whole Inches Ex. 01"-99" the Special Requirements Box and Specify

THERMOWELLS & PROTECTION TUBES

FOR TEMPERATURE SENSING IN A PRESSURE ENVIRONMENT

EGT's quality thermowells are available in several materials. Also in built-up (2-piece) wells. Thermowells with flanges and special thermowells without mounting threads can be made for weld-in applications. Any thermowell not listed will be quoted upon receipt of full specifications.

When ordering, specify the catalog number, material, the "U" and "A" (stem) length and the "T" (lagging) length when required. Specifications on the flanged thermowell should include the size, pressure rating, type of flange and material of flange. Specify plug and chain, if needed (brass or stainless steel).

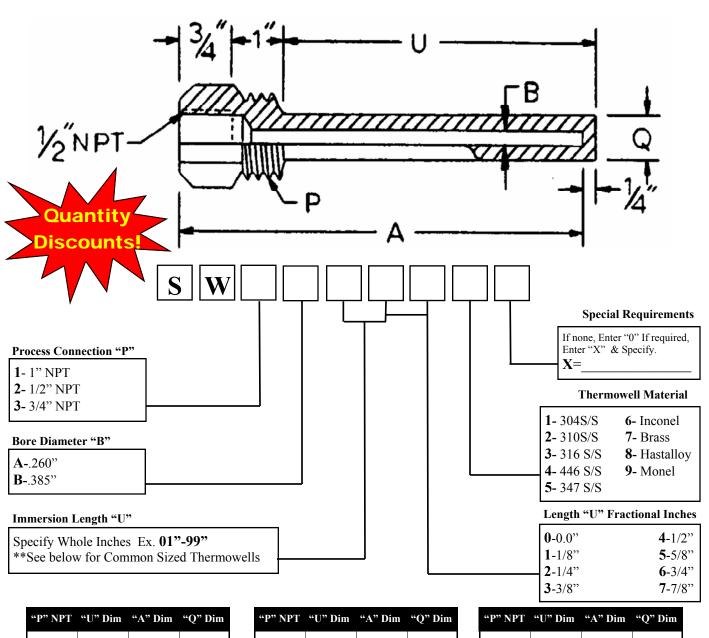
Notes:

On special materials where hex is not available, we will supply round stock with wrench flats. Complete thermocouple assemblies upon application, according to your specifications. Also available on "consult factory basis" metal tags, hydrostatic test, and dye penetrant test. Carbon steel, stainless steel and brass plug and chain are also available.

Threaded Thermowell	
Van Stone Drilled Wells	
Metal Tubes.	
Ceramic Tubes	

Thermowells

MATERIAL COMPATIBILITY CHART

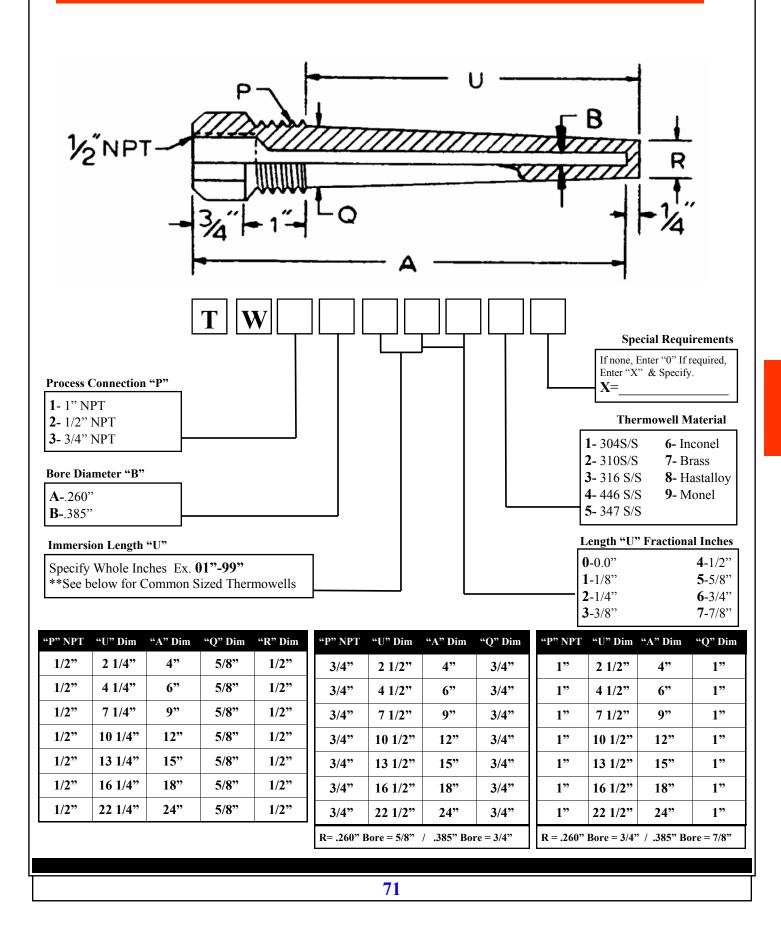

THERMOWELLS

Manufactured from drilled bar stock, EGT's thermowells provide protection from pressure, gas and liquid elements. Thick walls provide sturdy protection for the sensor against high velocity and corrosive environments. Below is a helpful guide of recommended materials for specific corrodents.

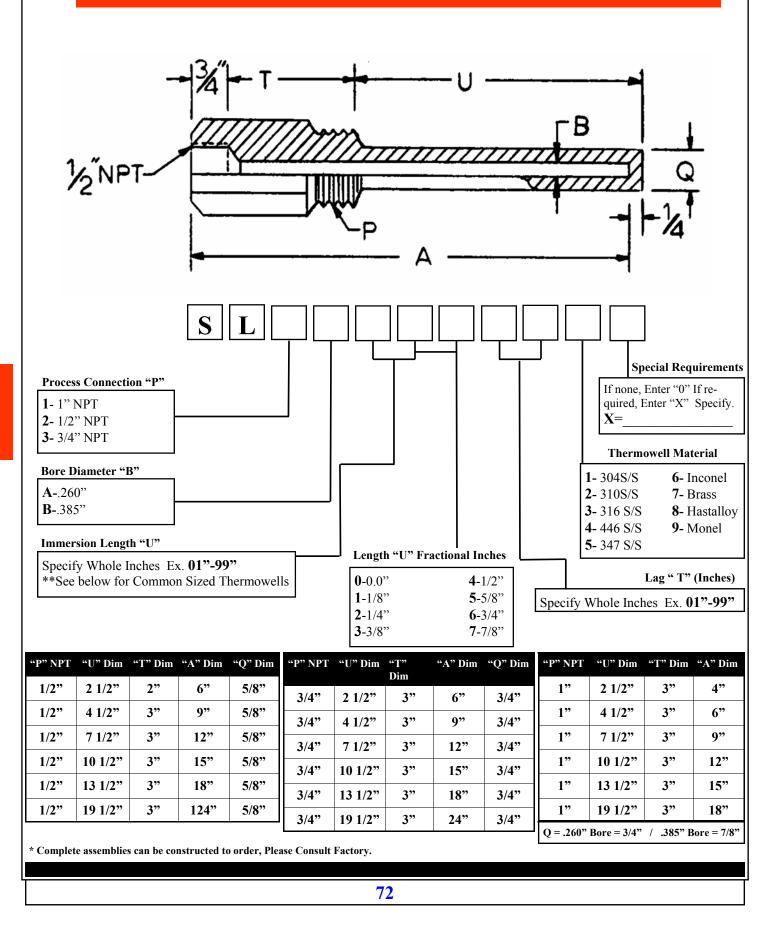
% ALL ALL ALL ALL ALL ALL ALL	Nickel 304SS 304SS 304SS Hast. C	Copper (10) Sulfate Copper Plating Solution (Cyanide) Copper Plating Solution (Acid)	75	% M ALL	316SS 304SS 304SS	°F % Material Oxygen 75 ALL Steel Oleic Acid See Fatty Acids Oxalic Acid 212 ALL Monel Photographic Bleaching 100 ALL 304SS 304SS
ALL ALL ALL ALL ALL	Nickel 304SS 304SS 304SS Hast. C	Copper Plating Solutior (Cyanide) Copper Plating Solutior	180 1 75	ALL	304SS	Oleic Acid See Fatty Acids Oxalic Acid 212 ALL Monel
ALL ALL ALL ALL ALL	304SS 304SS 304SS Hast. C	(Cyanide) Copper Plating Solution	ו 75			Oxalic Acid 212 ALL Monel
ALL ALL ALL ALL ALL	304SS 304SS Hast. C	(Cyanide) Copper Plating Solution	75		00,000	
ALL ALL ALL ALL	304SS Hast. C	Copper Plating Solution				
ALL ALL ALL ALL	Hast. C				30435	Photographic Bleaching 100 ALL 304SS Palmitc Acid See Fatty Acids
ALL ALL ALL			200		304SS	Phosphoric Acid 212 ALL 316SS
ALL		Corn Oil	200	ALL	304SS	Phenol 212 ALL 316SS
ALL	Hast B	Creosote	300		Monel	Potassium Compounds See Sodium Compounds
ALL		Crude Oil		Lacquer Th		Propane 300 Steel
		Ethyl Acetate	500	Luoquor II	Steel	Rosin 700 100% 316SS
A Marchan		Ethyl Chloride, DRY		Alcohols		Sea Water 75 Monel
	001,01000	Ethanol	212	ALL	304SS	Soap & Detergents 212 Monel 304SS
50%	Monel	EthyleneGlycol				Sodium Bicarbonate 212 20% 316SS
ALL		(Uninhibited)	75		Steel	Sodium Bisulphite 212 20% 304SS
ALL		Ethylene Oxide	500	ALL	Hast. C	Sodium Bisulphate 212 20% 304SS
ALL		Fatty Acids	75	ALL	Hast. C	Sodium Carbonate 212 40% 316SS
	Monel	Fernc Chloride	300	ALL	304SS	Sodium Chloride 300 30% Monel
	304SS	Ferric Sulfate	212	40%	316SS	Sodium Chromate 212 ALL 316SS
	304SS	Formaldehyde	300	ALL	316SS	Salt or Brine See Sodium Chloride
Calcium		Formic Acid	300		Steel	Sodium Cyanide 212 ALL 304SS
	304SS	Freon	100		304SS	Sodium Hydroxide 212 30% 316SS
	Steel	Flourine, Anhydrous	450		316SS	Sodium Hypochlorite 75 10% Hast. C
ALL	316SS	Furtural	300		Steel	Sodium Nitrate 212 40% 304SS
15%	Monel	Gasoline	300		304SS	Sodium Nitrate 75 20% 316SS
ALL	Brass	Glucose	300	ALL	304SS	Sodium Phosphate 212 10% Steel
	304SS	Glue ph 6-8	212	ALL	Brass	Sodium Silicate 212 10% Steel
ALL	316SS	Glycerine	212	ALL	Hast. C	Sodium Sulfide 212 30% 316SS
DRY	/ Monel	Hydrobromic Acid	225	ALL	Hast. B	Sodium Sulfite 212 10% 316SS
ALL	Steel	Hydrochloric Acid				Sodium Sulfate 212 30% 304SS
Alcohols		(37 - 38%)	500			Sodium Thiosulfate 212 ALL 304SS
	Hast. C					Steam 304SS
ALL	Hast. C			60%		Stearic Acid See Fatty Acids
ALL	Hast. C					Sugar Solution See Glucose
20%	6 Hast. C					Sulfur 500 304SS
	Powder					Sulfur Chloride 75 DRY 316SS
Phenol		, .				Sulfur Dioxide 500 DRY 316SS
						Sulfur Trioxide 500 DRY 316SS
ALL						Sulfuric Acid 212 10% 316SS
				ALL		Sulfuric Acid 212 10-90% Hast. B
						Sulfuric Acid 212 90-100% 316SS
ALL						Sulfuric Acid Furning 175 Hast. C
			75	ALL	30455	Sulfurous Acid 75 20% 316SS
			010	400/	00400	Titanium Tetrachlonde 75 ALL 316SS
ALL						Tannic Acid 75 40% Hast. B
				10%		Toluene 75 Steel Trichloracetic Acid 75 ALL Hast B
		2		ALL		Trichlorethylene 300 DRY Monel Turpentine 75 316SS
						Varnish 150 Steel
				Clucose	30433	Zinc Chloride 212 ALL Hast. B
ALL	31055			GIUCUSE	30455	Zinc Sulfate 212 ALL Hast. B Zinc Sulfate 212 ALL 316SS
	21800			ALL		210 Junate 212 ALL 31033
	31655		300	ALL	316SS	
ALL		Nitric Acid	300	ALL	31033	
в	ALL Icohols ALL 20% Jeaching henol ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ALL Steel Icohols Hast. C ALL Hast. C 20% Hast. C 20% Hast. C Ieaching Powder henoi ALL Brass ALL 304SS 304SS 304SS ALL Monel Monel ALL Monel ALL Monel ALL Monel ALL Monel ALL Monel ALL Monel ALL Hast. C ALL 304SS ALL Hast. C ALL 316SS	ALL Steel Hydrochloric Acid Icohols (37 - 38%) Hast. C Hydrogen Chloride, Dry ALL Hast. C ALL Hast. C ALL Hast. C 20% Hast. C Hydrogen Chloride, Dry Hydrogen Chloride, Dry Hydrofluoric Acid Hydrogen Peroxide Henol ALL Brass ALL S04SS S04SS Jatt Monel Monel Magnesium Chloride Monel Magnesum Sulfate Monel Magnesum Sulfate ALL 304SS Monel Magnesum Sulfate Monel Magnesum Sulfate ALL Hast. C Mercury MaLL ALL Hast. C Metrylene Chloride, Dry ALL Hast. C Metryl Chloride, Dry ALL Hast. C Metryl Chloride, Dry Milk fresh or sour Molasses	ALL Steel Hydrochloric Acid Icohols (37 - 38%) 500 Hast. C Hydrogen Chloride, Dry 212 ALL Hast. C Hydrogen Chloride, Dry 212 ALL Hast. C Hydrogen Flouride, Dry 212 ALL Hast. C Hydrogen Flouride, Dry 212 Leaching Powder Hydrogen Proxide 300 ALL Brass Kerosene 300 ALL 304SS Lactic Acid 212 304SS Lactic Acid 212 Monel Linseed Oil 212 Monel Magnesium Chloride 75 ALL Monel Magnesum Sulfate 75 ALL Hast. C Mercuric Chloride 75 ALL Hast. C Mercury 212 Monel Magnesum Sulfate 75 ALL Hast. C Methylene Chloride 75 ALL Hast. C Methylene Chloride 75 ALL Hast. C Methylen Chloride 75 ALL Hast. C Methylene 75	ALL Steel Hydrochloric Acid Icohols (37 - 38%) 500 Hast. C Hydrogen Chloride, Dry 212 ALL ALL Hast. C Hydrogen Chloride, Dry 212 60% ALL Hast. C Hydrogen Chloride, Dry 212 60% ALL Hast. C Hydrofluoric Acid 175 20% Hast. C Hydrofluogilicic Acid 125 10-100% ALL Brass Kerosene 300 ALL ALL 304SS Lacquers & Thinners 300 ALL ALL Monel Linseed Oil 212 50% Monel Magnesium Chloride 75 ALL ALL Monel Magnesum Sulfate 75 10% ALL Hast. C Mercuric Chloride 70 ALL Hast. C Methylene Chloride 75 ALL Hast. C Methylenchlori	ALL Steel Hydrochloric Acid Icohols (37 - 38%) 500 304SS Hast. C Hydrogen Chloride, Dry 212 ALL 304SS ALL Hast. C Hydrogen Chloride, Dry 212 ALL 304SS ALL Hast. C Hydrogen Chloride, Dry 212 60% Monel ALL Hast. C Hydrogen Chloride, Dry 212 40% Monel Ieaching Powder Hydrogen Peroxide 300 ALL Steel ALL Brass Kerosene 300 ALL Steel ALL 304SS Lacquers & Thinners 300 ALL 316SS 304SS Lime 75 Steel Mickel Monel Magnesium Chloride 75 ALL 304SS ALL Monel Magnesium Chloride 75 ALL 304SS ALL Monel Magnesium Chloride 75 ALL 304SS ALL Monel Magnesium Hydroxide Magnesium Hydroxide ALL 304SS ALL Monel Magnesum Sulfate 75 10%

Monel® is a registered trade mark of the Inco family of companies Hastalloy B® and Hastalloy C® are registered trade marks of Haynes International

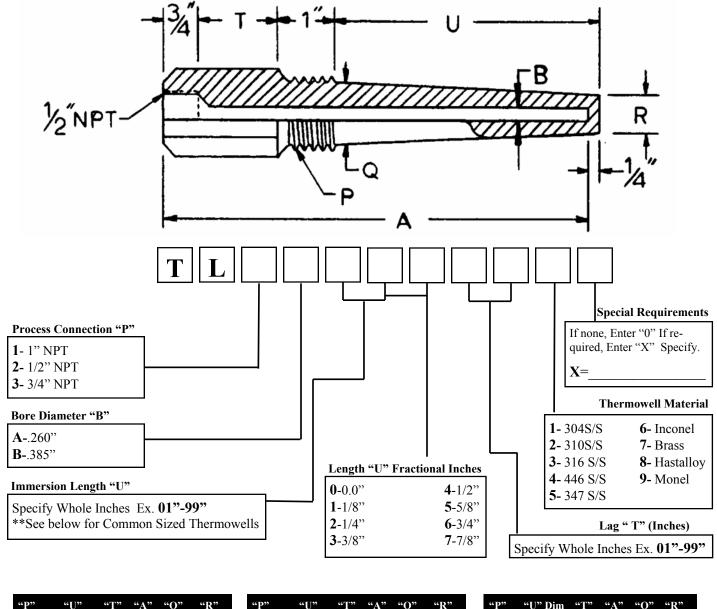
SW STYLE Straight Drilled Thermowell



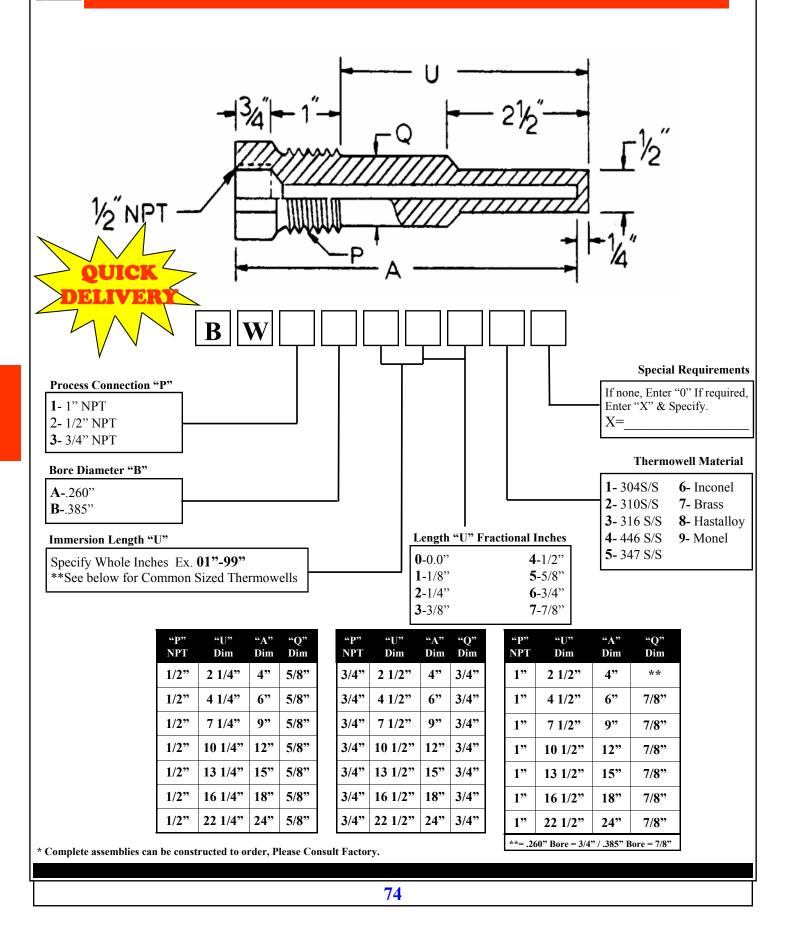
1/2"	2 1/4"	4"	5/8"
1/2"	4 1/4"	6"	5/8"
1/2"	7 1/4"	9"	5/8"
1/2"	10 1/4"	12"	5/8"
1/2"	13 1/4"	15"	5/8"
1/2"	16 1/4"	18"	5/8"
1/2"	22 1/4"	24"	5/8"


"P" NPT	"U" Dim	"A" Dim	"Q" Dim
3/4"	2 1/2"	4"	3/4"
3/4"	4 1/2"	6"	3/4"
3/4"	7 1/2"	9"	3/4"
3/4"	10 1/2"	12"	3/4"
3/4"	13 1/2"	15"	3/4"
3/4"	16 1/2"	18"	3/4"
3/4"	22 1/2"	24"	3/4"
		1	

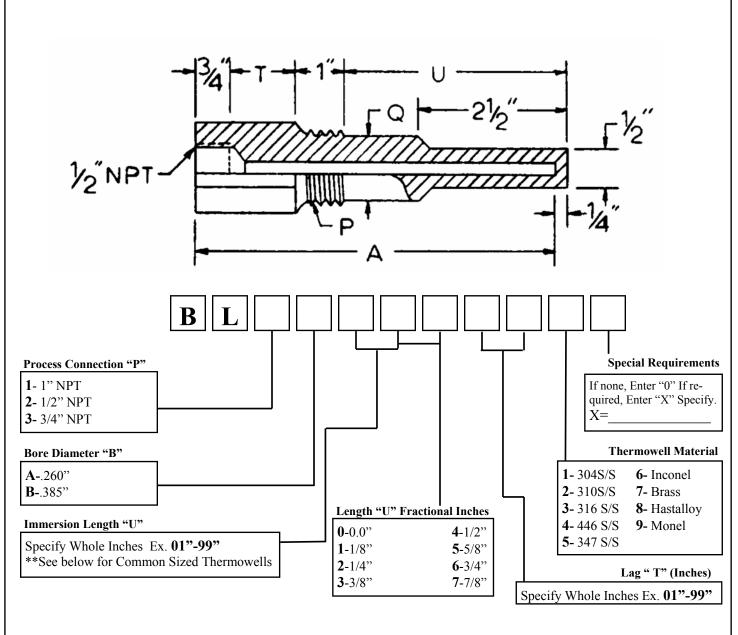
"P" NPT	"U" Dim	"A" Dim	"Q" Dim				
1"	2 1/2"	4"	**				
1"	4 1/2"	6"	**				
1"	7 1/2"	9"	**				
1"	10 1/2"	12"	**				
1"	13 1/2"	15"	**				
1"	16 1/2"	18"	**				
1"	22 1/2"	24"	**				
**=.260"	**= .260" Bore = 3/4" / .385" Bore = 7/8"						


TW STYLE Tapered Drilled Thermowell

SL STYLE Straight/Lagging Drilled Well

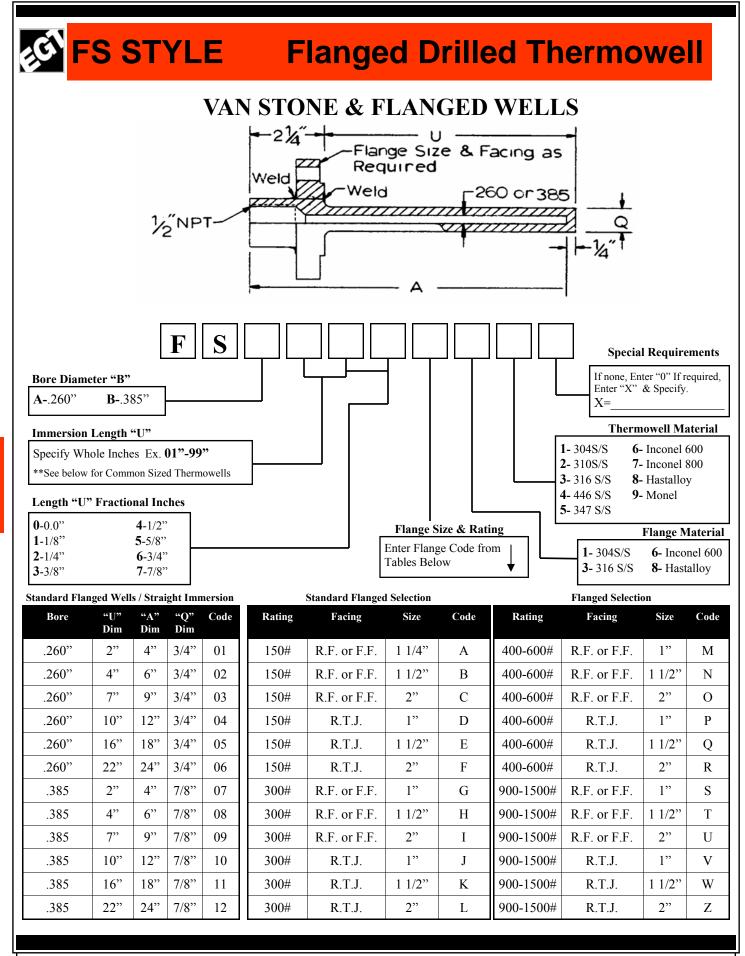


TL STYLE Taper/Lagging Drilled Well



NPT	Dim	Dim	Dim	Dim	Dim	NPT	Dim	Dim	Dim	Dim	Dim	N	PT	0 Dim	Dim	Dim	Dim	Dim
1/2"	2 1/2"	2"	6"	5/8"	1/2"	3/4'	° 2 1/2"	3"	6"	3/4"	**		1"	2 1/2"	3"	6"	***	**
1/2"	4 1/2"	3"	9"	5/8"	1/2"	3/4'	° 4 1/2"	3"	9"	3/4"	**		1"	4 1/2"	3"	9"	***	**
1/2"	7 1/2"	3"	12"	5/8"	1/2"	3/4'	° 7 1/2"	3"	12"	3/4"	**		1"	7 1/2"	3"	12"	***	**
1/2"	10 1/2"	3"	15"	5/8"	1/2"	3/4'	" 10 1/2"	3"	15"	3/4"	**		1"	10 1/2"	3"	15"	***	**
1/2"	13 1/2"	3"	18"	5/8"	1/2"	3/4'	" 13 1/2"	3"	18"	3/4"	**		1"	13 1/2"	3"	18"	***	**
1/2"	19 1/2"	3"	24"	5/8"	1/2"	3/4'	" 19 1/2"	3"	24"	3/4"	**		1"	19 1/2"	3"	24"	***	**
						_	.260" Bore =	= 5/8"	/ .385	5" Bore	= 3/4"	*	*=	.260" Bore	= 3/4"	/ .385	" Bore	= 7/8"

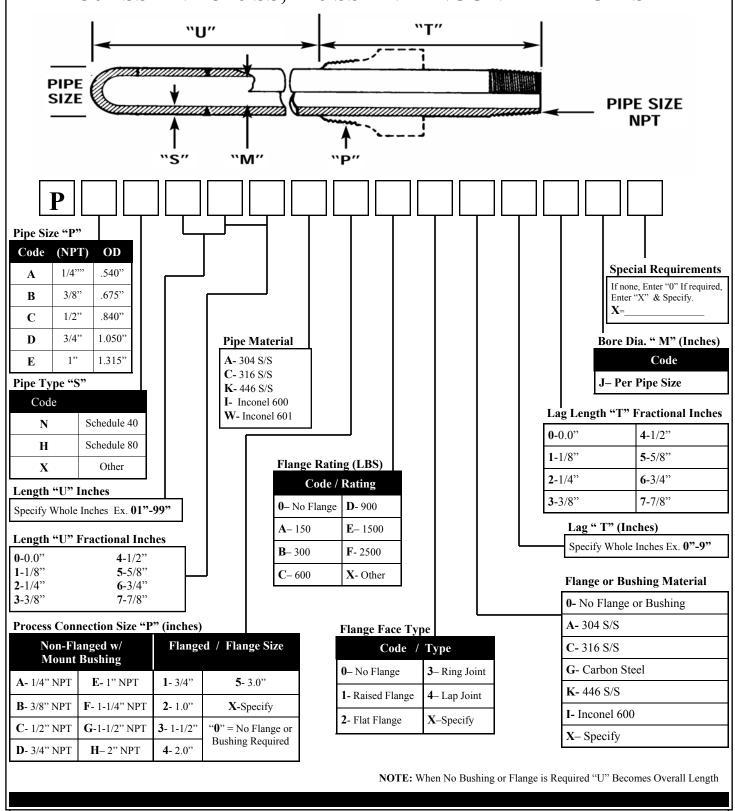
BW STYLE Stepped Drilled Thermowell

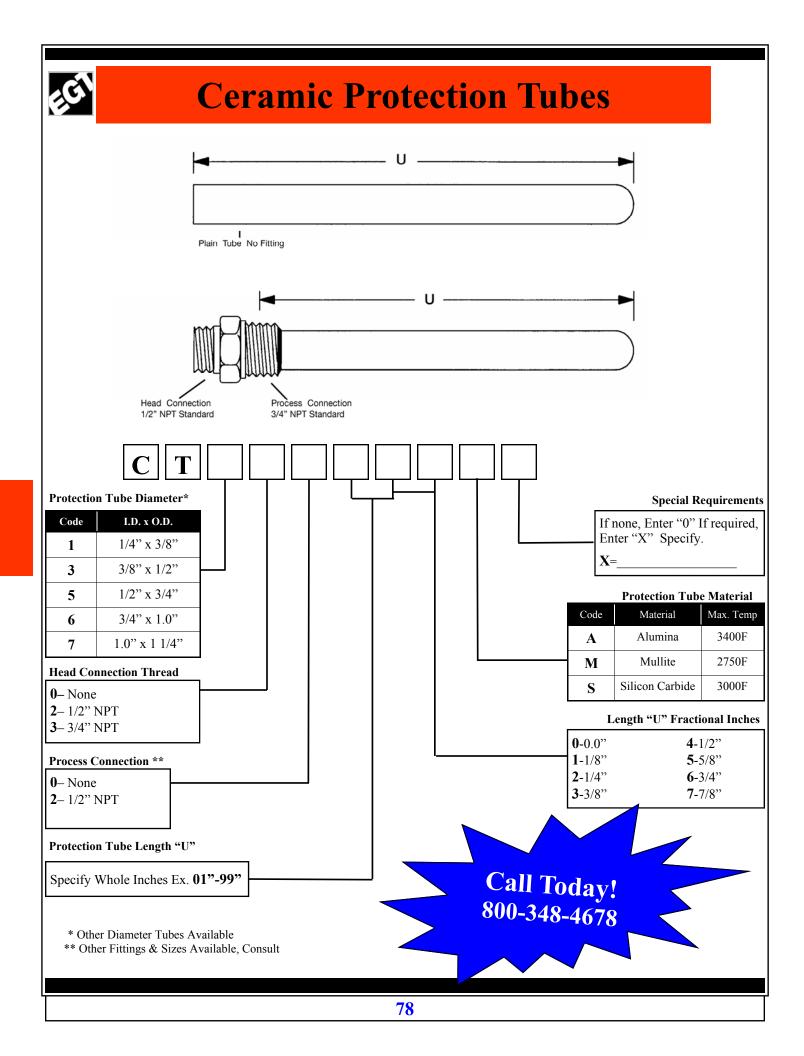

BL STYLE Stepped/Lagging Drilled

"P" NPT	"U" Dim	"T" Dim	"A" Dim	"Q" Dim	"P" NPT	"U" Dim
1/2"	2 1/2"	2"	6"	_	3/4"	2 1/2"
1/2"	4 1/2"	3"	9"	5/8"	3/4"	4 1/2"
1/2"	7 1/2"	3"	12"	5/8"	3/4"	7 1/2"
1/2"	10 1/2"	3"	15"	5/8"	3/4"	10 1/2"
1/2"	13 1/2"	3"	18"	5/8"	3/4"	13 1/2"
1/2"	19 1/2"	3"	24"	5/8"	3/4"	19 1/2"

	Dim	Dim	Dim	Dim
3/4"	2 1/2"	2"	6"	—
3/4"	4 1/2"	3"	9"	3/4"
3/4"	7 1/2"	3"	12"	3/4"
3/4"	10 1/2"	3"	15"	3/4"
3/4"	13 1/2"	3"	18"	3/4"
3/4"	19 1/2"	3"	24"	3/4"

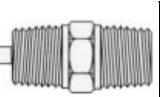
"P" NPT	"U" Dim	"T" Dim	"A" Dim	"Q" Dim
1"	2 1/2"	3"	6"	
1"	4 1/2"	3"	9"	7/8"
1"	7 1/2"	3"	12"	7/8"
1"	10 1/2"	3"	15"	7/8"
1"	13 1/2"	3"	18"	7/8"
1"	19 1/2"	3"	24"	7/8"




Metal Protection

STYLE – PIPE TYPE – STOCKED STANDARD MATERIAL 304 SS AND 316 SS, 446 SS AND INCONEL ALLOY'S

SECTION 5


Sensor Hardware & Accessories

Mounting Fittings

Fixed Type Fittings

Fixed type fittings are brazed or welded to the sheath. All fittings are made of 304 or 316 stainless steel. Note that the exact immersion length of sensor (or well "stem length") must be known with this type of fitting.

Part Number	Male NPT Thread
D2	1/4"
D4	1/2"
D6	3/4"

Double Threaded Bushing– Process Fitting

Single Threaded Bushing– Mounting Fitting

6	Dn	1111	tittt
1	1		AW.
	-10		W.

Part Number	Male NPT Thread
Q1	1/8"
Q2	1/4"
Q4	1/2"
Q6	3/4"

Spring Loaded Fittings have a 316 SS Body with an Inconel® 600 Spring

These spring loaded fittings feature a fluid tight seal pressure rated to 50 psi at ambient. Primarily designed for use with thermowells and ensures bottom contact.

	S	
		\leq

Low cost spring loaded fittings for drilled well and non-fluid applications, see L Series.

Spring Loaded Process Bushing (Fluid)					
Part Number	Tube O.D.	Male NPT			
S4-125	.125"	1/2"			
S4-188	.188"	1/2"			
S4-250	.250"	1/2"			

Spring Loaded Process Bushing (Non-Fluid)					
Part Number	Tube O.D.	Male NPT			
L4-125	.125"	1/2"			
L4-188	.188"	1/2"			
L4-250	.250"	1/2"			

Compression Fittings

Re-adjustable Compression Fittings

Made entirely of 304 stainless steel, these fittings can be relocated at different positions along the sheath. Sealant glands are available in Teflon® (500°F) and Lava (1000°F). Pressure is rated up to 3,000 psi.

Re-adjustable Compression Fittings					
Tube O.D.	Male NPT	Teflon Part #	Lava Part #		
.063"	1/8"	T1	V1		
.125"	1/8"	T2	V2		
.188"	1/8"	Т3	V3		
.250"	1/8"	T4	V4		
.125"	1/4"	Т5	V5		
.188"	1/4"	Т6	V6		
.250"	1/4"	Τ7	V7		
.250"	1/2"	T8	V8		

Non - Adjustable Compression Fittings

Non - Adjustable compression fittings available in stainless steel and brass. These fittings cannot be relocated along the sheath once tightened. The 304 stainless fittings have pressure ratings up to 10,000 psi, depending on temperature and sheath diameter.

Non - Adjustable Compression Fittings					
Tube O.D.	Male NPT	S/S Part #	Brass Part #		
.063"	1/8"	N1	B1		
.125"	1/8"	N2	B2		
.188"	1/8"	N3	B3		
.250"	1/8"	N4	B4		
.125"	1/4"	N5	B5		
.188"	1/4"	N6	B6		
.250"	1/4"	N7	B7		
.250"	1/2"	N8	B8		
.500"	1/2"	N9	B 9		

Mounting Fittings

Bushing & Plate/ Collar assembly shown separately

- Flame Collar Assembly to suit ATEX approved heads •
- Not required for FM approved heads •
- Material: SS304
- **Bushing Thread: M20x1.5** •
- Suitable for 40mm & DIN size terminal blocks & transmitters
- Mount spring loaded terminal blocks directly on to collar plate for spring loaded assembly

FLAME PATH COLLAR ASSEMBLY

Part#	ID of Collar	
TCFPA-6.1	6.1MM	
ТСГРА-8.1	8.1MM	
TCFPA-9.6	9.6MM	

Bushing & Plate/ Collar assembly shown together. Assembly fits into ATEX rated heads

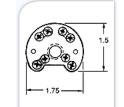
Connector Blocks for Plastic Heads

(2) TerminalsPart# EGT-CB-4-2(3) Terminals	(4) Terminals Part# EGT- (6) Terminals

nals GT-CB-4-4

Part# EGT-CB-4-6

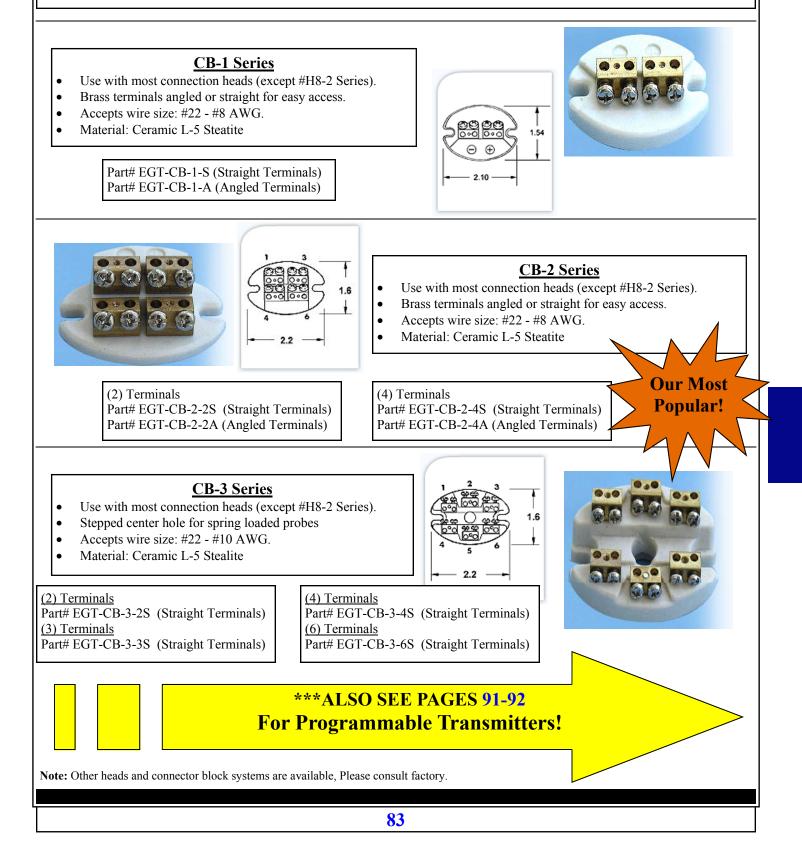
CB-4 Series


- Designed for use with #H4-1 Series plastic connection heads.
- May be used with most connection heads (except #H8 Series).
- Stepped center hole for spring loaded probes.
- Recommended wire size: #26 #16 AWG.
- Material: Polypropylene / Max Temp 198F

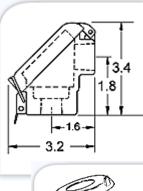
- Designed for use with #H8-2 Series plastic connection head. •
- May be used with most connection heads.
- Stepped center hole for spring loaded probes.
- Accepts #26 - #16 AWG

Part# EGT-CB-4-3

• Material: Polypropylene / Max Temp 198F



(4) Terminals Part# EGT-CB-5-4


Connector Blocks for Metal Heads

- TECHNOLOGIES, INC.
- Connector blocks offer ceramic cast base with brass connection body and stainless steel screws.
- CB-3 blocks also offers a center core hole for Spring Loaded Sensor travel which is common in RTD assemblies.

<u>General Purpose Flip Top Head</u>

The H2-1 Series head features a hinge-cover cap for convenience. This head will accommodate DIN standard transmitters. The polished aluminum finish and silicone gasket are corrosion resistant. A weather-tight seal offers protection from wind-blown rain and dust, and carries a NEMA 4 rating.

This head is ideal as a general-purpose head for customers interested in convenient access to internal instrumentation.

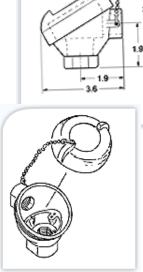
FEATURES

- Weather-tight seal NEMA 4 rating.
- 2-wire DIN transmitters directly mount.
- Convenient flip-top closure
- Durable, flexible silicone gasket offers superior seal.

General Purpose

- Area on cap for application of private label.
- Conduit opening size: 3/4" or 1/2" NPT

Flip Top T/C Head				
Part Number Opening NPT Siz (Conduit / Process)		Materials		
H2-1-1118	3/4" X 1/8"	Aluminum		
H2-1-1112	3/4" X 1/2"	3/4" X 1/2" Aluminum		
H2-1-1112X	1/2" X 1/2"	Aluminum		
H2-1-1134	3/4" X 3/4"	Aluminum		


FEATURES

- Weather-tight seal NEMA 4 rating.
- 2-wire transmitters directly mount.
- Fits connection blocks up to 2" diameter.
- Secure, screw-top closure
- Stainless steel hardware
- Durable, flexible silicone gasket offers superior seal.
- Epoxy coating available
- Conduit opening size: 3/4" or 1/2" NPT
- Can be modified for DIN Transmitters

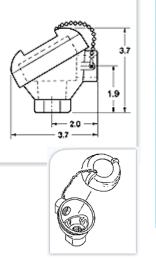
General Purpose Screw Cap T/C Head

Part Number	Opening NPT Size (Conduit / Process)	Materials
H3-1-1418	3/4" X 1/8" Aluminum	
H3-1-1412	3/4" X 1/2" Aluminun	
H3-1-1412X	1/2" X 1/2"	Aluminum
H3-1-1434	3/4" X 3/4"	Aluminum

General Purpose Screw Cap Head

The H3-1 Series head features a screw-closure cap for security. The polished aluminum finish and silicone gasket are corrosion resistant. A weather-tight seal offers protection from wind-blown rain and dust. NEMA 4 rating.

This head offers excellent protection for internal instrumentation and is ideal as a generalpurpose head.



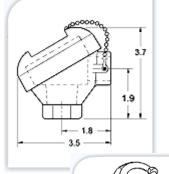
FEATURES

- Weather-tight seal NEMA 4 rating
- Fits connection blocks up to 2" diameter.
- 2-wire transmitters directly mount
- Stainless steel hardware
- Secure, screw-top closure
- Durable, flexible silicone gasket offers superior seal.
- Area on cap for application of private label.
- Conduit opening size: 3/4" NPT
- Can be modified for DIN Transmitters

General Purpose CAST IRON H/D Screw Cap T/C Head

Part Number	Opening NPT Size (Conduit / Process)	Materials	
H6-1-2512 3/4" X 1/2"		Cast Iron	
Н6-1-2534	3/4" X 3/4"	Cast Iron	

Heavy Duty Cast Iron Screw Cap Head


The H6-1 Series head features a screw-closure cap for security. A durable paint is applied as a rust preventative finish. A weather-tight silicone seal offers protection from wind-blown rain and dust. This head carries a NEMA 4 rating. This head is ideal as a heavy duty head for customers

FEATURES

- Constructed of corrosion resistant 316L SS
- 2-wire transmitters directly mount.
- Fits connection blocks up to 2" diameter.
- Stainless steel hardware
- Durable, Flexible Silicone gasket offers superior seal.
- Area on cap for application of private label.
- Conduit opening size: 3/4" NPT
- Can be modified for DIN Transmitters

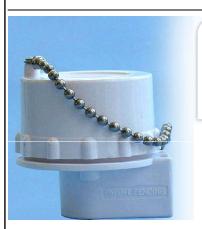
General Purpose Stainless Steel H/D Screw Cap T/C Head

Part Number Opening NPT Siz (Conduit / Process)		Materials
H7-1-1812	3/4" X 1/2"	Stainless Steel
H7-1-1834	3/4" X 3/4"	Stainless Steel


Stainless Steel Corrosion Resistant Head

The H7-1 Series head features a screw-closure cap for security. The head is constructed of 316L stainless steel, giving it excellent chemical and corrosion resistance.

A weather-tight seal offers protection from wind-blown rain and dust. This head carries a NEMA 4X rating.



FEATURES

- Molded from FDA app. white polypropylene.
- Continuous use temp. rating of 198° F.
- Weather-tight seal NEMA 4X rating.
- Durable, flexible silicone gasket offers superior seal.
- Convenient latching closure mechanism.
- Stainless steel cotter pin provided for security.
- Area on cap for application of private label.
- Conduit opening size: 3/4" NPT

FEATURES

- Molded from FDA app. white polypropylene or acetal copolymer (Duracon®)
- Standard DIN transmitters directly mount.
- Continuous use temp. rating of 198° F. (PP)
- Weather-tight seal NEMA 4X rating.
- Durable, flexible silicone gasket offers superior seal.
- Secure, screw-top closure.
- Area on cap for application of private label.
- Conduit opening size: 3/4" NPT
- Can be modified for DIN Transmitters

Food Service Flip Top Head

The H4-1 Series head features a hinge-cover cap for convenience. It is molded from FDA-approved white polypropylene, and is suitable for sanitary applications. A weather-tight seal offers protection from wind-blown rain and dust. This head carries a NEMA 4X rating.

This head is ideal as a general-purpose head for customers interested in convenient access to internal instrumentation.

FDA Approved Flip Top T/C Heads

Part Number	Opening NPT Size (Conduit / Process)	Material	
H4-1-1218	3/4" X 1/8"	WHT Polypropylene	
H4-1-1212	3/4" X 1/2"	WHT Polypropylene	
H4-1-1234	3/4" X 3/4"	WHT Polypropylene	
H4-1-1312*	3/4" X 1/2"	BLACK Polypropylene	

FDA Approved Screw Cap T/C Heads

The H8-1 Series head features a screw-cover cap for security. It is molded from either FDA-approved white polypropylene or acetal co-polymer (Duracon®) for alternate chemical resistance. This head is suitable for sanitary applications. A weather-tight seal offers protection from wind-blown rain and dust.

This head carries a NEMA 4X rating. This head is ideal as a general-purpose head in sanitary applications requiring caustic wash down.

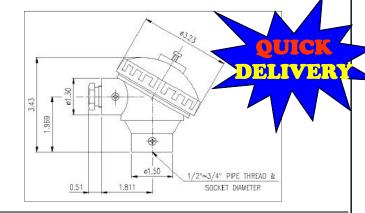
FDA Approved Screw Cap T/C Heads

Part Number	Opening NPT Size (Conduit / Process)	Material	
H8-2-2212	3/4" X 1/2" WHT Polypropyler		
H8-2-2212D	3/4" X 1/2"	Acetal co-polymer (Duracon®)	

3.2

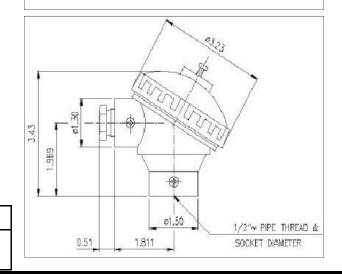
0.7

Ŧ


H4- Series : Polypropylene Screw Cover

- Suits DIN Transmitters, fits most other blocks
- FDA Approved Polypropylene
- New CTC series: 1¹/₂" OD logo fits on cover

Part#	Description	
H4-KTC-1234	1/2" NPT Process x 3/4" NPT Conduit	
Н4-СТС-1234	1/2" NPT Process x 3/4" NPT Conduit	
Н4-СТС-1234-В	1/2" NPT Process x 3/4" NPT Conduit (Black)	
Н4-КТС-1234-В	1/2" NPT Process x 3/4" NPT Conduit (Black)	

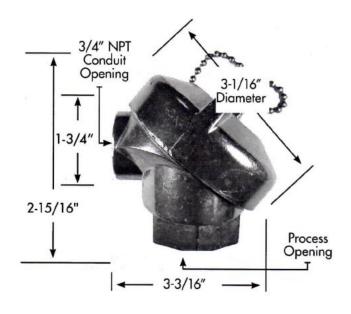


Part#	Description	
H10-TCN-1212	1/2" NPT Process x 1/2" NPT Conduit	

H10- Series : Nylon Screw Cover

• Suits DIN Transmitters, fits most other blocks

- Rated IP65
- Other thread sizes available to special order


Thermocouple Heads: Explosion Proof

Heavy Duty "Explosion Proof" Screw Cap Head

The series H5-1 thermocouple and RTD connection heads listed below are UL listed and they meet the requirements listed under UL886 and CSA C22.2 for Class I Groups C, D, Division 1 and 2; Class II Groups E, F, G; Class III for use in hazardous locations as described by the National Electrical Code.

Stainless Series heads are supplied with a bright finish 316L stainless steel body and cap, and they provide excellent chemical and corrosion resistance and meets NEMA 4X requirements.

Cast Iron/Aluminum Heads are provided with a zinc-plated cast iron body and polished aluminum cap and they provide some degree of corrosion resistance. All heads are supplied with an internal ground screw, a 825°F temperature rated gasket, and they will accept most terminal blocks or standard transmitters.

Explosion Proof Screw Cover T/C Heads			
Part Number Opening NPT Size (Conduit / Process)		Materials	
Н5-1-702-Е	3/4" X 1/2"	Stainless Steel	
Н5-1-703-Е	3/4" X 3/4"	Stainless Steel	
Н5-1-707-Е	3/4" X 1/2"	Cast Iron/ Aluminum	
Н5-1-708-Е	3/4" X 3/4"	Cast Iron/ Aluminum	

Thermocouple Heads: Explosion Proof

TCA Series: Aluminum, Silver Epoxy

TCA Series: Aluminum, Blue Epoxy

TCS Series: S/S 316

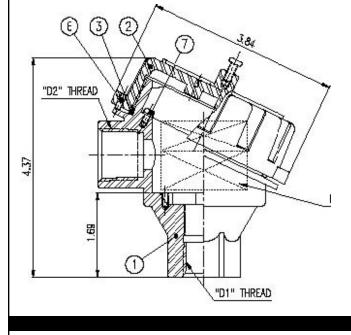
XD SERIES: EXPLOSION PROOF SCREW COVER					
Part#	Material	Epoxy Color	Certification	Thread Size (PExCE)	
H5-TCA-1212-F	Aluminum	Sliver	FM & FMC	1/2"x 1/2" NPT	
H5-TCA-1234-F	Aluminum	Sliver	FM & FMC	1/2"x 3/4" NPT	
H5-TCA-3434-F	Aluminum	Sliver	FM & FMC	3/4"x 3/4" NPT	
H5-TCA-1212-A	Aluminum	Blue	ATEX	1/2"x 1/2" NPT	
H5-TCA-1234-A	Aluminum	Blue	ATEX	1/2"x 3/4" NPT	
H5-TCA-3434-A	Aluminum	Blue	ATEX	3/4"x 3/4" NPT	
H5-TCS-1212-F	S/S 316	-	FM & FMC	1/2"x 1/2" NPT	
H5-TCS-1234-F	S/S 316	-	FM & FMC	1/2"x 3/4" NPT	
H5-TCS-3434-F	S/S 316	-	FM & FMC	3/4"x 3/4" NPT	
H5-TCS-1212-A	S/S 316	-	ATEX	1/2"x 1/2" NPT	
H5-TCS-1234-A	S/S 316	-	ATEX	1/2"x 3/4" NPT	
H5-TCS-3434-A	S/S 316	-	ATEX	3/4"x 3/4" NPT	

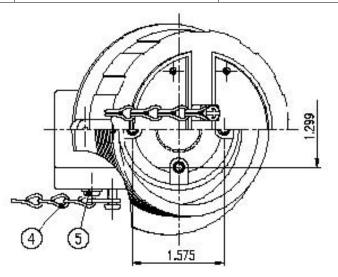
- Certified FM & FMC (Canada) or ATEX
- Note: FMC conforms to all CSA Standards

• Available in Cast Aluminum and SS316

- Suitable for 40mm & DIN size terminal blocks & transmitters
- Supplied with Stainless Steel Chain & Screws

Refer to next page for specifications and drawings




Thermocouple Heads: Explosion Proof

Certification	Equipment Ratings	Compliant Approval Standards
FM	Explosion Proof for Class I, Division 1, Groups A, B, C and D;	Class 3600 1998
	and dust-ignition proof for Class II, III Division 1, Groups E, F and G,	Class 3615 2006
	hazardous (classified) locations; indoor/ outdoor	Class 3810 2005
	Aluminum: NEMA 4	ANSI/ NEMA 250
	SS316: NEMA 4X	
FMC (Canada)	Explosion Proof for Class I, Division 1, Groups A, B, C and D;	CSA-C22.2 No. 0.4 2004
	and suitable for Class II, III Division 1, Groups E, F and G,	CSA-C22.2 No. 0.5 1982
	hazardous (classified) locations; indoor/ outdoor	CSA-C22.2 No. 25 1966
	Aluminum: NEMA 4	CSA-C22.2 No. 30 1986
	SS316: NEMA 4X	CSA-C22.2 No. 94 1991
		CSA-C22.2 No. 142 1987
ATEX	Atex Directive Code: II 2 G D	BSI 07ATEX1532458U
	Standards Code: Ex d IIC T6, Ex tD A21 T100°C IP68	

Item	Description	Material
1	Body	XDA: Alloy-AL ADC12 XDS: SS316
2	Cover	XDA: Alloy-AL ADC12 XDS: SS316
3	O-Ring	EPDM
4	Chain w/ 2 Screws	SS304/ SS302
5	Screw & Locking Washer (M4x5L)	SS302/ SS304
6	Grub Screw (M3x8L)	SS302
7	Screw & Locking Washer (M3x5L)	SS302/ SS304

PR Electronic Programmable Transmitters

PR electronics is a consolidated, international company with its headquarters in Jutland Denmark. The company's core expertise is the production of high quality analogue and digital signal conditioning modules. EGT is one of the Main Distributors in Southern California.

The product range covers a wide variety of functions within signal conditioning such as displays, Ex barriers, field mounted Ex transmitters, frequency/pulse converters, trip amplifiers, isolation amplifiers, calculators, controllers, signal converters, power supplies, temperature transmitters, valve controllers, etc. All functions are grouped into five main product lines: Display, Isolation, Temperature, I.S Interfaces, Universal. PR is well known for the simple easy to program instruments that take away the nightmare & difficulty of replacing old outdated equipment.

EGT carries the entire product line, we've listed our most popular items on the following pages, Please contact us if you don't see the item your looking for! Call 1-800-348-4678.

Head Mounted Temperature Transmitters

Part#	Transmitter Input & Certification's
PRE-5334A3B	2 Wire Transmitter T/C. Input
PRE-5333A	2 Wire Transmitter RTD Input
PRE-5331A3B	2 Wire Transmitter RTD, T/C. mV & Ohm Input
PRE-5331D3B	2 Wire Transmitter RTD, T/C. mV & Ohm Input I.S-ATEX,FM,CSA
PRE-5333D	2 Wire Transmitter RTD Input I.S-ATEX,FM,CSA
PRE-5335A	2-WIRE TRANSMITTER WITH HART® PROTOCOL ATEX II 3GD
PRE-5335D	2-WIRE TRANSMITTER WITH HART® PROTOCOL I.SATEX,FM,CSA
PRE-5350A	2-WIRE TRANSMITTER PROFIBUS® PA/FOUNDATION™ FIELDBUS
PRE-5350B	2-WIRE TRANSMITTER PROFIBUS® PA/FOUNDATION™ FIELDBUS I.S.

PR electronics' temperature transmitters cover every application within transmission of RTD and TC sensor signals into mA, mV, HART, PROFI-BUS® PA and FOUNDATION[™] Fieldbus communication. The product range includes: PRetrans 5100, PRetop 5300, PRetrans 6300, The 2200 series

PRetrans 5100, PRetop 5300 and PRetrans 6300

With the unique AUTOSWITCH, which automatically recognizes the protocol to which the transmitter is connected, these temperature transmitters can be integrated in both PROFIBUS® PA and FOUNDATION™ Fieldbus systems.

- The digital communication permits the user to carry out differential, redundancy and average measurements, PID regulation, diagnostics, etc.
- The integrated calibration function allows set up of sensor error detection.
- The transmitters are available for both standard and I.S. applications.
- The transmitters are most flexible and configurable through PR electronics' own PC program, PReset, or the common bus systems dependant on transmitter type.

PRetop 5350 and PRetrans 6350

- Bus transmitters compatible with the PROFIBUS® PA and FOUNDATION[™] Fieldbus protocols.
- Level transmitters for Ohmic level sensors with potentiometers up to 100 kOhm with the standardized bus protocols PROFIBUS® PA and FOUNDATION™ Fieldbus as output.
- LAS function and PID are both integrated in the FOUNDATION™ Fieldbus transmitter.
- PRetop 5350 and PRetrans 6350 are available as standard or I.S. versions.
- PRetop can be mounted in DIN form B sensor head and is thus suitable for direct mounting at the measurement area.
- The PRetrans 6350 is for DIN rail mounting and is thus appropriate for mounting in control room.

The 2200 series

A number of low-priced temperature transmitters each covering a specific application make up the 2200 series. Some transmitters are configured from factory; others can be programmed wholly or partly through DIP-switches or front/display.

PR Electronic Programmable Transmitters

DIN Rail Transmitters

In all aspects of the design PR electronics has focused on the universality of the 4000 series. Hence, the 4 product variants cover hundreds of applications, resulting in reduced stock as well as increased flexibility and competitiveness:

- Universal supply voltage of 21.6..253 VAC / 19.2..300 VDC.
- Universal input module for the connection of mA, V, Pt100, T/C, lin. R and potentiometer.
- Universal programming by way of the display front 4501, which recognizes the module type in question and adapts the menu structure accordingly.

The communication between user and module is characterized by its simplicity and thus the configuration can be carried out without a detailed manual. The following features optimize the usability of the PReasy 4000 series:

- The menu is easily understandable as the scrolling help text guides the user through all the configuration steps.
- All configuration options can be selected from the display front without the need of a PC, DIP-switches, jumpers or special tools.

Part# DIN Rail Transmitter / T/C -RTD Input & Certification					
PRE-4114	PRE-4114 Universal Transmitter Din Rail Mounting				
PRE-4116	Universal Transmitter w/ Relays for Din Rail Mounting				
PRE-4131	Programmable Universal Trip Amplifier Din Rail Mounting				
PRE-4222	Universal I/F Convertor Din Rail Mounting				

EGT carry's the entire line of PR Electronics, If you don't see the item your looking for, feel free to... Call us @ 1-800-348-4678

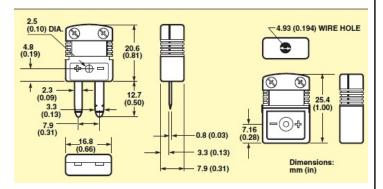
Transmitter Programming Options

Display Front PRE-4501

Communications interface with front keys for modification of operational parameters in the 4000 and 9000 series. The scrolling help text in the display is available in 7 languages and guides the user effortlessly through all the configuration steps. The 4501 is easily moved from one module to another whereby the configuration can be copied to other modules of the same type. When mounted in the process, the 4501 displays process data and module status.

Loop Link PRE-5909

Loop Link 5909 is a USB communications interface for configuration and monitoring of PR electronics' PC-programmable modules. PR modules available in the configuration program PReset ver. 5.0 or higher, can be programmed by way of Loop Link 5909.


Miniature Connector Systems

Miniature connectors are becoming the most popular size. We offer two different sizes that will fill a broad range of applications. Mini's offer lower cost with ANSI calibrations and color codes as standard.

- Heavy duty construction / MADE IN USA!
- Solid flat pins for strength
- Accepts wire sizes up to 20 AWG •
- Economical •
- Glass filled Nylon construction is rated to 220°C (425°F)

Mini Connector	Part#	Specify Calibration
Male / Plug	P20-	(J,K,T,E,N, R/S)
Female / Jack	J20-	(J,K,T,E,N, R/S)

Mini Connector Accessories

Moisture Resistant Boots

Wire Strain Relief's

Part# EGT-SRT-532-10

Part# EGT-MCC

Round Hole Mounting Brkt

Part# EGT-RHMB-01

Crimp Brass Adapters

Part# EGT-CBA- (Specify Tube Size)

Metal Safety Clip

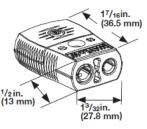
Part# EGT-MSCL

Panel Mounting Brkt

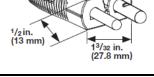
Part# EGT-PMB-01

Dual Plug Tube Clamp

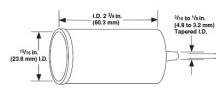
Part# EGT-DPTC- (Specify Tube Size)


Standard Connector Systems

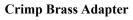
EGT's standard line of connector systems are lightweight, rugged, accurate and features a clamping mechanism that is unique in the industry. The new, easy-to-use clamping connection will replace the traditional screw and wire wrap. This new device allows a straight-in application, which squeezes the wire and forms a tight connection assuring a clean, strong signal.


Features and Benefits

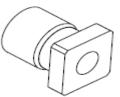
- ASTM color coded / Assures easy identification
- Compensated alloys / Provides accuracy in readings •
- Glass-filled thermoplastic / Provides high impact strength •
- Captive cap screws / Secure connection
- Connection hardware / Redesigned to eliminate a number of components •
- Meets requirements for ASTM E1129 / Ensures adequate pin spacing, dimensions and contact resistance
- Rated to 215°C (425°F)



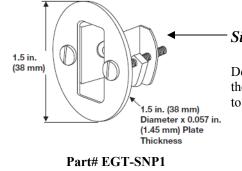
Std. Connector	Part#	Specify Calibration
Male / Plug	P10-	(J,K,T,E,N, R/S)
Female / Jack	J10-	(J,K,T,E,N, R/S)



Metal Cable Clamp


Moisture Resistant Boot

Part# EGT-MRB1-PAIR



Standard Connector Accessories

Part# EGT-CBA1-(Specify Tube Size)

Part# EGT-SAC220

Single Panel Mount Hardware, 425°F (218°C)

Designed for use with EGT's standard thermocouple connectors, these units fit panels up to 7/16 inch thick. Panel cutout: 1-1/8 inch to 1-5/32 inch hole. Units fit into standard 3/4 inch knockouts.

94

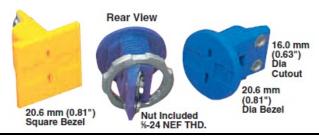
Round Hole Panel Jacks

Type RSJ—Standard Size Connectors

Rear View

Square

Easy Installation


No special tooling is required for installation. Just drill or punch a round hole in your panel and tighten the supplied nut. Ideal for single circuit applications where the connector must blend with existing instrumentation. Thermocouple circuits can be added to existing panels with only minimal interruption of operations. A choice of either square or round face is available to match the design lines of your installation. Thermocouple grade alloys used to form the contacts preserve the accuracy of the circuit even in changing ambient temperatures.

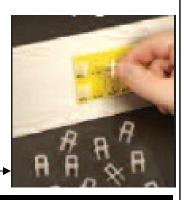
*For Standard Size Connectors

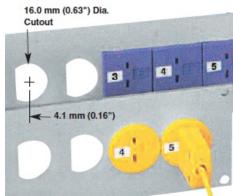
Square Face	Round Face	Specify Calibration
EGT-RSJ-S	EGT-RSJ-R	J,K,E,T,R/S

Type RMJ - Miniature Size Connectors

- **Standard Accepts All Industry Standard Size Connectors** .
- **Miniature Accepts All Industry Miniature Size Connectors**
- Mounts in Round or "D" Punch Holes
- Square or Round Bezel to Match Your Panel Components •
- **Heavy Duty Glass-Filled** •
- Nylon Rated to 220°C (425°F) •
- **Polarity Keved**
- **Color-Coded**
- **No Filing Required**

*For Miniature Size Connectors

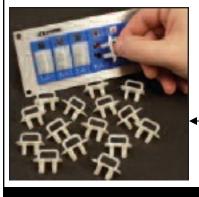

Square Face	Round Face	Specify Calibration
EGT-RMJ-S	EGT-RMJ-R	J,K,E,T,R/S

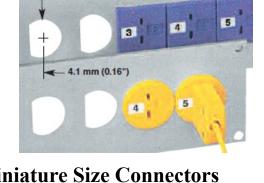

<u>Std / Mini Connector Dust Caps</u>

When the connector is not in use protect your investment by adding dust connector caps to keep debris / moisture out! They come in a package of 12pcs.

Part# EGT-SPJ-CAP (12 Pack) STD.

Part# EGT-MPJ-CAP (12 Pack) Mini

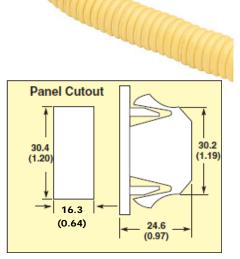




and Nut Included

28.7 mm (1.13") Dia. Bezel

12-14 NPSL THD.



Standard / Mini Snap-In Panel Jacks

Mounting hardware has been eliminated in the SPJ-style panel jack by including retaining spring clips as part of the body design. A small tab and notch are provided to maintain straight, even rows without the need for precision matching. SPJ color-coded nylon connectors accept any standard size male thermocouple connector and are available in all ANSI calibrations as well as tungsten alloys.

- No Installation Tools Needed
- Interlocking
- Color-Coded
- Numbered
- Reusable
- Accepts All Standard Size and Miniature Male Connectors
- Combination Phillips/Slot Screws
- Wire Divider
- Accepts Solid or Stranded Wire up to Size 14 AWG
- Free ID Number Labels and Dust Cap Supplied with Each Jack

Snap Jack	Specify Calibration
EGT-SPJ-F-	J,K,E,T,R/S,N

Termination & Connector Systems THERMOCOUPLE PANEL Mini or Full Size, 2-Pole Stripanel®

- Stripanels available in 2 to 12 circuits Color Coded
- For cutouts Does not require mounting frame or mounting holes.
- Stripanels can be wired and installed completely from front. Patented self-contained fastening device, "T-Nut", is permanently attached, simplifies mounting, holds tight. *Patent No. 3046515*.
- Thermocouple type and circuit numbers are marked on face of Stripanel with corresponding circuit numbers and polarity identification on the back. Stripanels are numbered starting from "1" unless specified otherwise.
- Panel bodies molded of glass filled thermoset compounds (*will not melt*) for high strength and dependability. The color coded panels will withstand ambient temperatures to 400°F (205°C) continuous and 500°F (260°C) intermittent. High-Temperature Panels (all Hi-Temp panels are color coded red) will withstand ambient temperatures to 800°F (425°C) continuous and 1000°F (540°C) intermittent.
- Inserts are spring loaded collet type to assure positive full contact with the negative insert larger making it virtually impossible to mismate.
- For corrosive applications, gold or nickel plated prongs and inserts are available. *Caution system errors can result from use of plated contacts if significant thermal gradients exist at connector.*

Number of Circuits	"A" Dimension Panel Length	Dimension Cutout Length	Full Size 2-Pole Panel	<u><i>Hi-Temp</i></u> Full Size 2-Pole Panel	Strip Panels for Standard Connectors
2	1 1/2"	1 5/16"	EGT-1032-2-*	EGT-1132-2-*	
3	2 1/4"	2 1/16"	EGT-1032-3-*	EGT-1132-3-*	
4	3"	2 13/16"	EGT-1032-4-*	EGT-1132-4-*	
5	3 3/4"	3 9/16"	EGT-1032-5-*	EGT-1132-5-*	
6	4 1/2"	4 5/16"	EGT-1032-6-*	EGT-1132-6-*	
7	5 1/4"	5 1/16"	EGT-1032-7-*	EGT-1132-7-*	
8	6"	5 13/16"	EGT-1032-8-*	EGT-1132-8-*	
9	6 3/4"	6 9/16"	EGT-1032-9-*	EGT-1132-9-*	
10	7 1/2"	7 5/16"	EGT-1032-10-*	EGT-1132-10-*	MADE IN
11	8 1/4"	8 1/16"	EGT-1032-11-*	EGT-1132-11-*	S S USA
12	9"	8 13/16"	EGT-1032-12-*	EGT-1132-12-*	

*Thermocouple Type Code: J, K, T, N, E, R, S, U

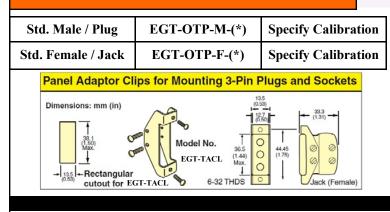
2	Strip 1	Panels	s for N	liniat	ure C	onnect	ors
•	2	3	1	5	6		8
LTI)	R.M.				u	m	
		Ш		Π	Ш	m	1
		K					

	Number of Circuits	"A" Dimension Panel Length	Dimension Cutout Length	Miniature 2-Pole Panel	<u>Hi-Temp</u> Mini 2-Pole Panel
	2	1.38"	1.25"	EGT-1237-2-*	EGT-1337-2-*
	3	2.06"	1.94"	EGT-1237-3-*	EGT-1337-3-*
	4	2.75"	2.63"	EGT-1237-4-*	EGT-1337-4-*
5"	5	3.44"	3.31"	EGT-1237-5-*	EGT-1337-5-*
	6	4.13"	4.00"	EGT-1237-6-*	EGT-1337-6-*
	7	4.81"	4.69"	EGT-1237-7-*	EGT-1337-7-*
	8	5.50"	5.38"	EGT-1237-8-*	EGT-1337-8-*

Also Available in 3- Pole Versions

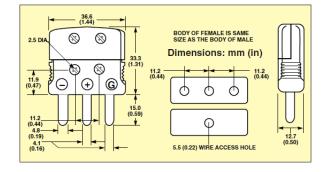
3-Prong Mini Flat Pin Connector for Thermocouple, RTD & 3-Wire Thermistor

- With Shield Wire Copper Connection Pin
- Suitable for Continuing Ground Wire Through Panel Jack
- Glass-Filled Nylon, Rated to 220°C (425°F)
- Heavy Duty Construction
- Color-Coded
- Accepts Stranded or Solid Wire up to Size 20 AWG
- Combination Phillips/ Slot Screws


* Please Specify Calibration J,K,E,T,N or RTD

Mini-Male / Plug	EGT-MTP-M-(*)	Specify Calibration
Mini-Female / Jack	EGT-MTP-F-(*)	Specify Calibration

3-Prong Standard Size Round Pin Connector for Thermocouple, RTD & Thermistor


The type OTP 3-prong color-coded, quick disconnect plugs and jacks provide reliable connections between thermocouples and extension wires. The color-coded bodies are molded of high performance glass reinforced nylon. Tubular plug prongs and collet-type jack inserts have low mass and reduce temperature gradients. Negative prongs and inserts are larger than positives to insure proper polarity upon connection. This is a standard feature on all OMEGA® connectors. Recommended for most applications requiring three-wire circuits, including shielded thermocouples, thermistors, and RTD's. Will withstand ambient temperatures to 220°C (425°F). High-impact construction.

* Please Specify Calibration J,K,E,T,N or RTD

- 3 Prong / Pin Standard Design
- White Uncompensated for RTD
- Thermocouple Color Coded ANSI Glass Filled Nylon Rated to 425 F

SECTION 6

Thermocouple / RTD Wire

Thermocouple / RTD Wire

EGT Stocks Thermocouple Extension Wire for Quick Delivery!

EGT Thermocouple Wire is Offered in a Wide Selection of Insulations and Temperature Ratings!

EGT Offers Pre-Certified Uniformity Survey Wire in Several Temperature Ratings Ready for Fast Delivery!

INSULATED THERMOCOUPLE WIRE

Selection and Use of Thermocouple Extension Wire

All wire, thermocouple grade and extension grade, is manufactured to the industry-accepted standard ANSI MC 96.1, which specifies the maximum allowable thermoelectric deviation over a broad range of temperature. Thermocouple wire or thermocouple extension wire must be used to extend thermocouples to control or indication instrumentation. Base metal thermocouple extension grade wire is made from the same materials as thermocouple wire; however, its use is restricted to a lower range of temperatures. Within its range, extension grade wire maintains the same limits of error as thermocouple grade wire.

The conditions of measurements – i.e., temperature range, environment, protection, insulation requirements and response, should be considered when selecting the proper material for your application. EGT carries a wide range of thermocouple and RTD wire for all types of insulation needs that meet temperature, chemical, and moisture and abrasion resistance requirements. With insulation temperature ranges from -328 °F (-200 °C) to 2350 °F (1290 °C).

The following section gives information on specific wire construction, insulation properties along with ordering part number. The following construction styles are most common to the industry. EGT can manufacture many varieties of thermocouple wires and can often produce special custom construction orders on short notice.

Limits of Error

Tables give the standard and special limits of error for thermocouple wire in two sections – thermocouple wire and thermocouple extension wire. The limits of error for each type of thermocouple apply only over the temperature range specified. (The limits of error in the tables do not include installation or system errors.) Where limits of error are given in percent (%), the percentage applies to the °C temperature being measured. EGT stocks most calibration and insulation types. Both thermocouple and extension grade wire must meet American National Standards Institute, Inc. (ANSI) standard tolerances of error or special tolerances of error. The tolerances are available in the table below.

Thermocouple Type		°C			°F		
Wire Material	ANSI Type Symbol	Temp. Range	Stand. Limits	Special Limits	Temp. Range	Stand. Limits	Special Limits
*Iron/Constantan	J	0° to +285° +285° to +750°	±2.2℃ or ±0.75%	±1.1℃ or ±0.4%	32° o 545° 545° to 1400°	±4° ±.75%	±2° 0.4%
Chrome!"/"Alume!"	к	-200° to -100° -110° to 0° 0° to 285° +285° to 1250°	±2% ±2.2° ±2.2° ±.75%	±1.1° ±0.4%	-330° to -165° -165° to +32° +32° to +545° ±545° to +2300°	±2% ±4° ±4° ±.75%	±2° ±0.4%
Copper/Constantan	т	-200° to -65° -65° to +130° +130° to +350°	±1.5% ±1.0% + 75%	±0.8% ±0.5% ±0.4%	-330° to -85° ±85° to +270° +270° to +660°	±1.5% ±1.8° ±.75%	±0.8% ±0.9° +0.4%
Chromel™/Constantan	£	-200° to -170° -170° to +250° +250° to +340° +340°to +900°	±1.0% ±1.7° ±1.7° ±0.5%	±1° ±1° ±0.4% ±0.4%	-330° to -270° -270° to +480° +480° to +640° +640° to +1500°	±1% ±3° ±3° ±.5%	±1.8% ±1.8% ±0.4% ±0.4%
Nicrosil/Nisil	N	0° to +285° +285° to +1250°	±2.2° ±.75%	±1.1° ±0.4%	+32° to +545° +545° to 2300°	±4° ±.75%	±2° ±.4%
Platinum 10% Rhod. Platinum	s	0° to +285° +600° to +1450°	±1.5° ±.25%	±.6° ±.1%	+32° to +1110° +1110° to 2650°	±2.7° ±.25 %	±1.1° ±.1%
Platinum 13% Rhod. Platinum	R	0° to +285° +600° to +1450°	±1.5% ±.25%	±.6° ±.1%	+32° to +1110° +1110°to 2650°	±2.7% ±.25 %	±1.1° ±.1%
Platinum 30% Rhod. Platinum 6% Rhod.	в	+870° to +1700°	±.5%		+1600° to +3100°	+.5%	
Tungsten Tungsten 26% Rhen.	WR+	+400° to +2300°	±1%		+800° to +4200°	±1%	
Tungsten 5% Rhen. Tungsten 25% Rhen.	W3+	+400° to 2300°	±1%		+800° to +4200°	±1%	
Tungsten 5% Rhen. Tungsten 26% Rhen.	W5+	+400° to +2300°	±1%		+800° to 4200°	±1%	

Initial Calibration Tolerances for EGT Wire and Cable

A- Special tolerances for temperatures below 0° C are difficult to justify due to limited available information.

However the following values for Type E and T may use as a guide.

E -200 to 0°C +/-1°C or +/- .5% whichever is greater. / T -200 to 0°C +/- .5°C or +/- .8% whichever is greater

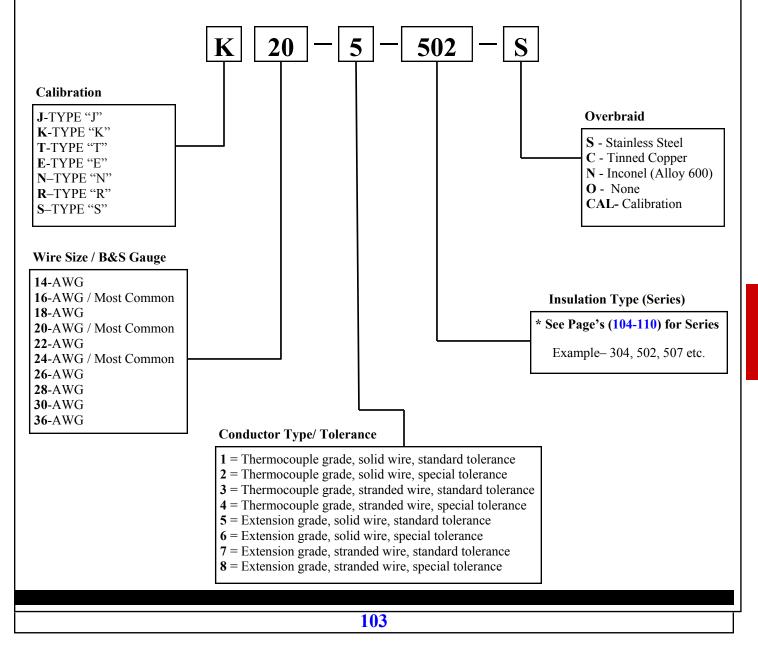
		Al	NSI Color C	ode	Max. U	lseful	
	ANSI		Overall	Overall	Temp.		Environment
Thermocouple Type	Symbol	Single	Ext. Wire	T/C Wire	C°	F°	(Bare Wire)
lron (+)* Constantan (-)	J	White Red	Black	Brown w/ Black Tracer	0° to 750°	32° to 1382°	Reducing, vacuum, inert, limited use in oxidizing at high temp., not recommended for low temp.
Chromel (+) TM Alumel (-) *TM	к	Yellow Red	Yellow	Brown w/ Yellow Tracer	-200° to 1250°	-328° to 2282°	Clean oxidizing and inert limited use in vacuum or reducing.
Copper (+) Constantan (-)	т	Blue Red	Blue	Brown w/ Blue Tracer	-200° to 350°	-328° to 662°	Mild oxidizing, reducing vacuum or inert. Good where moisture is present.
Chromei (+) TM Constantan (-)	E	Purple Red	Purple	Brown w/ Purple Tracer	200° to 900°	-328° to 1652°	Oxidizing or inert. Limited use in vacuum or reducing.
Nicrosil (+) Nisel (–)	N				to 1250°	32° to 2300°	Oxidizing inert or dry reducing atmosphere. Must be protected from sulfurous atmospheres.
Platinum 10% Rhod (+) Platinum ()	s	Black Red	Green		0° to 1450°	32° to 2642°	Oxidizing or inert atmospheres. Do not insert in metal tubes.
Platinum 13° Rhod (+) Platinum (-)	R	Black Red	Green		0° to 1450°	32° to 2642°	Beware of contamination.
Platinum 30° (Rhod (+) Platinum 6% (Rhod (-)	в	Grey Red	Grey		0° to 1700°	32° to 3092°	
Tungsten 3% Rhen (+) Tungsten 25% Rhen (-)	W3+	Orange Red	Orange		0° to 2320°	32° to 4208°	Vacuum,inert, hydrogen, atmosphere. Beware of embrittlement.
Tungsten 5% Rhen (+) Tungsten 26% Rhen (–)	W5+	Orange Red	Orange		0° to 2320°	0° to 4208°	

* Denotes magnetic lead

Solid vs Stranded

Solid conductors are generally the preferred and most widely used in both thermocouple grade and extension grade wire. However, when repeated stress and flexibility are a concern, stranded conductors are the best choice. Stranded conductors are made of several strands of smaller gauge wire that, when grouped together, combine for the final AWG. The tables below are helpful when calculating loop resistance for analog instruments and selecting wire size.

	AWG		J	Т		K	Ν	E	
Nominal	14	.0	899	.074	413	.1466	.1948	.175	1
Resistance of	16	.1	426	.117	78	.2330	.3097	.278	3
Wire (Loop)	18	.2	279	.187	74	.3707	.4926	.442	7
Ohms per double Foot	20		612	.298		.5897	.7030	.704	3
	24		133	.753		1.490	1.980	1.779	
	26	1.4		1.198	-	2.370	3.149	2.830	
	28	2.3		1.905	-	3.768	5.006	4.500	
	30	3.6		3.025	0	5.984	7.952	7.147	
	36	14.7	6	12.17		24.08	N/A	28.76	
							 	<u> </u>	
	Wire Size B & S Ga			neter Solid)	-	ameter (Stranded)	Number of Strands	Strand Gauge	
Conductor	14	•		.064	mon	0.076	7	22	
Sizes	16		-	.051		0.060	7	24	
	18		-	.040		0.048	7	26	
	20			.032		0.038	7	28	
	22			.025		0.030	7	30	
	24		0	.020		0.025	7	32	
	26		0	.016					
	28		0	.013					
	30		0	.010					
	36		0	.005					


Extension Wire is available with twisted and shielded conductors and a copper drain wire which together minimizes EMI/RFI or electrical "noise". Multi-pair cable is also available with individual shielded pairs and an overall shield. These extension cables are available with PVC and FEP insulation's with ambient temperature rating of 220 °F (105 °C) and 400 °F (205 °C) respectively. UL Listed Thermocouple cable is also available on a limited selection basis for installation at UL required sites.

Ordering

EGT is always willing to work around your schedule. We will accept annual blanket orders and will release only the wire needed while saving your company money. Our sales staff will help you in selecting the appropriate wire and provide price and delivery. We are happy to assist you in designing custom wire constructions to fit your requirements and needs. Our "State of the Art" Certification Department can calibrate and certify your wire. EGT will issue a certificate of calibration with the exact departure from the standard curve at your selected temperature points. EGT's certification laboratory is equipped with the same system used by the National Institute of Standards and Technologies in Washington DC., N.I.S.T. (the old National Bureau of Standards). Our computerized calibration system is capable of measurements down to .00001 °F with furnace test zone stability of .02 °F for 10 minutes or longer.

Selecting A Part Number

Use the table below to help choose the correct calibration, tolerance, wire gauge and insulation series. To better serve you, the following pages include thermocouple and extension wire part numbers. *We Offer Quantity Discounts, Contact Factory.*

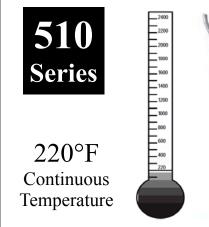
502 Series

220°F Continuous Temperature

Construction Details

Series 502 is an economical wire that's also available in UL listings for PLTC (Power Limited Tray Cable) applications. The primary and duplex insulation is PVC. It yields a construction that's inexpensive while performing continuously at temperatures to 220 °F (105 °C). Series 502 is often used in conduit and wiring trays where flexibility allows for easy installation. The Series 502 can be easily stripped using hand tools or mechanical methods.

Performance Capabilities


- Continuous temperature rating: 220 °F (105 °C)
- Excellent Resistance Properties to Moisture, Good Resistance to Chemicals, and Abrasion

Features and Benefits

- Available as UL Listed PLTC Wire and Cable
- Extruded PVC single conductor and duplex insulation for excellent moisture resistance
- Most Popular Covering on Extension Wires
- Excellent moisture resistance, good abrasion and chemical resistance

Applications

- Laboratories
- Automotive
- Pulp/Paper
- Industrial Equipment
- Cement Curing

Construction Details

Series 510 is PVC insulated and shielded construction for systems sensitive to induced voltages and "noise." Series 510 is also available as UL Listed PLTC. The conductors are insulated with color coded PVC. The next operation twists the two insulated conductors with a copper drain wire. An aluminized polyester tape is wrapped around the wires to impart a 100 percent shield. Lastly, another layer of color-coded PVC is applied. The twisting eliminates most EMI while the shield minimizes AC "noise". For higher temperatures specify Series 509.

Performance Capabilities

Continuous Temperature Rating: 220 ° F (105 °C)

Features and Benefits

- Extruded PVC single conductor insulation for excellent moisture protection.
- Twisted; extruded PVC overall duplex insulation
- Available in UL Listed PLTC ASTM E 230 color code.
- Excellent moisture resistance, good chemical and abrasion resistance.
- Ideal for computer data recording circuits

Applications

- Automotive
- Laboratory
- Industrial Equipment
- Anywhere electrical interference is possible

EGT has Custom Wire Construction with a minimum purchase of 2000 feet! We can end the search...

Call Today for a Free Quote

1-800-348-4678

Series "502" Thermocouple Wire				
"Solid"	Most (<u>Common</u>		
Part Number	AWG/Dia.	Finish Size		
J20-5-502	#20/.032"	.092" X .154"		
K20-5-502	#20/.032"	.092" X .154"		
T20-5-502	#20/.032"	.092" X .154"		
S20-5-502	#20/.032"	.092" X .154"		
J16-5-502	#16/.051"	.131" X .222"		
K16-5-502	#16/.051"	.131" X .222"		
<u>"Stranded"</u>	Most (Common		
Part Number	AWG/Dia.	Finish Size		
J20-7-502	#20Str/.038"	.098" X .166"		
K20-7-502	#20Str/.038"	.098" X .166"		
T20-7-502	#20Str/.038"	.098" X .166"		
J16-7-502	#16Str/.051"	.140" X .240"		
K16-7-502	#16Str/.051"	.140" X .240"		

Series "510" Thermocouple Wire						
"Solid"	Most Common					
Part Number	AWG/Dia.	Finish Size				
J20-5-510	#20/.032"	.164"				
K20-5-510	#20/.032"	.164"				
T20-5-510	#20/.032"	.164"				
J16-5-510	#16/.051"	.222"				
K16-5-510	#16/.051"	.222"				
T16-5-510	#16/.051"	.222"				
"Stranded"	Most	Common				
Part Number	AWG/Dia.	Finish Size				
J20-7-510	#20Str/.038'	.176"				
K20-7-510	#20Str/.038'	.176"				
T20-7-510	#20Str/.038'	.176"				

Series "5	Series "507" Thermocouple Wire					
"Solid"	Most	Most Common				
Part Number	AWG/Dia.	Finish Size				
J20-1-507	#20/.032"	.068" X .120"				
J24-1-507	#24/.020"	.056" X .096"				
K20-1-507	#20/.032"	.068" X .120"				
K24-1-507	#24/.020"	.056" X .096"				
T20-1-507	#20/.032"	.068" X .120"				
T24-1-507	#24/.020"	.056" X .096"				
"Stranded"	Most (<u>Common</u>				
Part Number	AWG/Dia.	Finish Size				
J20-3-507	#20Str/.038"	.074" X .132"				
J24-3-507	#24Str/.024"	.060" X .104"				
K20-3-507	#20Str/.038"	.074" X .132"				
K24-3-507	#24Str/.024"	.060" X .104"				
T20-3-507	#20Str/.038"	.074" X .132"				
T24-3-507	#24Str./.024"	.060" X .104"				

- Performance Capabilities
- Continuous temperature rating: 400 °F (204 °C)
- Single Short Term rating: 500 °F (260 °C)

Features and Benefits

- Extruded FEP single conductor and duplex insulation for excellent protection
- Available as UL Listed PLTC wire and cable
- ASTM E 230 color code for easy identification
- Excellent abrasion, moisture and chemical resistance
- Additional abrasion resistance with optional stainless steel and tinned copper wire overbraids
- Custom construction available

Applications

- Aerospace
- Industrial Equipment & Testing
- Food & Dairy
- Pharmaceutical
- Plastics
- Metal Treating
- Automotive Dyno Test Cells

HVAC Installations

400°F Continuous Temperature

Construction Details

Series 507 is the most economical fluoroplastic insulated wire construction. The Series 507 have individual conductors coated with a layer of color coded FEP. The insulated conductors are then parallel duplexed with an additional layer of FEP. The finished construction has a temperature rating of 500 °F (260 °C). Abrasion, moisture and chemical resistance is far in excess of most other insulations. This construction is widely used when pulling long lengths of wire through conduit. FEP's low friction coefficient and abrasion resistance makes it ideally suited for these applications.

Series "509" Thermocouple Wire				
"Solid"	Most	Common		
Part Number	AWG/Dia.	Finish Size		
J16-5-509	#16/.051"	.174"		
K16-5-509	#16/.051"	.174"		
T16-5-509	#16/.051"	.174"		
J20-5-509	#20/.032"	.128"		
K20-5-509	#20/.032"	.128"		
T20-5-509	#20/.032"	.128"		
"Stranded"	Most	<u>Common</u>		
Part Number	AWG/Dia.	Finish Size		
J20-7-509	#20Str/.038'	.140"		
K20-7-509	#20Str/.038'	.140"		
T20-7-509	#20Str/.038'	.140"		

*Quantity's under 500' Require a \$7.00 Respooling Charge.

Performance Capabilities

- Continuous temperature rating: 400 °F (204 °C)
- Single reading 500 °F (260 °C)

Features and Benefits

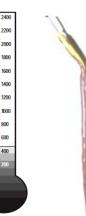
- Extruded FEP single conductor insulation for excellent protection.
- Twisted; extruded FEP overall duplex insulation to minimize electrical interference.
- Aluminum/polyester shield with drain wire reduces electrical "noise".
- ASTM E 230 color code for easy identification.
- Excellent abrasion, moisture and chemical resistance.
- Custom overbraid constructions available to improve abrasion resistance.

Applications

- Aerospace data acquisition systems
- Computer assisted molding equipment
- Food, Dairy & Pharmaceutical
- Engine Dynamometers and test stands
 Industrial testing and control equipment installations
 - HVAC installations

400°F Continuous Temperature

Construction Details


Series 509 was developed especially for use with microprocessor based systems. The conductors are insulated with color coded FEP. They're then twisted with a copper drain wire. An aluminized polyester tape is wrapped around the conductors and drain wire. Finally, FEP is applied as an overall outer jacket. The finished construction can withstand temperatures in excess of 400 °F (204 °C) Twisted conductors minimize EMI and the taped shield eliminates most problems associated with AC "noise". Available in both thermocouple and thermocouple extension grade constructions is ideal for a wide variety of applications. When better abrasion resistance is required, specify an overall metallic braid.

105

Series 500°F

508

Construction Details

Continuous

Temperature

Series 508 offers both primary and duplex insulation of fused TFE tape. The tape is spirally applied to the conductors and heated in a continuous bonding oven. This process, called sintering, forms the tape into a homogeneous layer. When sintered, the tape exhibits all of the advantages of extruded TFE insulation, while eliminating the concentricity problems associated with TFE extrusions. One of the benefits of the TFE tape insulation is the smaller overall insulation thickness. The 508 TFE/TFE insulation exhibits excellent moisture and chemical resistance and good abrasion resistance.

180

1600

1400

1200

1000

800

600

Performance Capabilities

- Continuous temperature rating: 500 °F (260 °C)
- Single reading: 600 °F (315 °C)

Features and Benefits

- Fused TFE tape single conductor and duplex insulation to eliminate concentricity problems
- Excellent moisture and chemical resistance, good abrasion resistance
- ASTM E 230 color code for easy identification
- Additional abrasion resistance with optional stainless steel or tinned copper wire overbraids

Applications

- Petroleum plants
- Plating operations
- Aircraft composite and repair bonding
- Food industry, Washdown safe, Bake ovens

Series "508" Thermocouple Wire					
"Solid"	Most	Common			
Part Number	AWG/Dia.	Finish Size			
J20-1-508	#20/.032"	.060" X .106"			
J24-1-508	#24/.020"	.047" X .077"			
K20-1-508	#20/.032"	.060" X .106"			
K24-1-508	#24/.020"	.047" X .077"			
T20-1-508	#20/.032"	.060" X .106"			
T24-1-508	#24/.020"	.047" X .077"			
"Stranded"	Most	Common			
Part Number	AWG/Dia.	Finish Size			
J20-3-508	#20Str/.038"	.064" X .112"			
K20-3-508	#20Str/.038"	.064" X .112"			

The Series 508 is fully color coded and capable of continuous operation in excess of 500 °F (260 °C). Because the fusing process causes the duplex tape to fuse with the primary insulation, Series 508 is not recommended for applications where it's necessary to remove the outer tape while leaving the conductor insulation intact. When higher temperature capabilities are required, specify polyimide-insulated constructions. See Series 511 and Series 512. For improved abrasion resistance, consider a stainless steel overbraid.

511 Series

600°F Continuous Temperature

1		64					
Series "511" Thermocouple Wire							
"Solid"	Most Common						
Part Number	AWG/Dia.	Finish Size					
K20-1-511	#20/.032"	.084"					
K24-1-511	#24/.020"	.060"					
J20-1-511	#20/.032"	.084"					

Performance Capabilities

- Continuous temperature rating: 600 °F (315 °C)
- Single reading: 800 °F (430 °C)

Features and Benefits

- Fused polyimide tape single conductor insulation for excellent Dielectric Strength
- Duplex construction via twisted single conductors
- Both legs have ASTM E 230 colorcoded tracers for easy identification
- Excellent abrasion, moisture and chemical resistance

Applications

•

.

•

- Cryogenic applications
- Aerospace and Composite industries
- Electric power plants
- Petrochemical installations
- High exposure to U.V., Chemicals and Acids
- Food Processing plants

Note: Special Limits Available, Consult

Construction Details

Series 511 is the most economical polyimide taped construction. The polyimide film applied to the conductors is considered to be the ultimate "soft" insulation. The Series 511 also offers excellent electrical insulating properties with 6900 Volts per mil Dielectric Strength. The polyimide film maintains its strength at temperatures to 600 °F (315 °C). The FEP laminate serves as a moisture barrier and allows the tape to be fused with itself. The finished construction will not unravel when cut. The Series 511 conductors are wrapped with the polyimide tape that is .005" thick with a 75% overlay and is then fused in a continuous oven process. Each conductor is color coded with a colored thread under the tape. The final operation is twisting the insulated conductors into a duplex construction, thereby eliminating the overall duplex insulation and minimizing cost.

Series "512" Thermocouple Wire				
"Solid"	Most	<u>Common</u>		
Part Number	AWG/Dia.	Finish Size		
J20-1-512	#20/.032"	.048" X .088"		
K20-1-512	#20/.032"	.048" X .088"		
<u>"Stranded"</u>	Most Common			
Part Number	AWG/Dia.	Finish Size		
J20-3-512	#20Str/.038"	.056" X .098"		
K20-3-512	#20Str/.038"	.056" X .098"		
K20-3-512-S	#20Str/.038"	.081" X .112"		
T20-3-512	#20Str/.038"	.081" X .098"		

*Quantity's under 500' Require a \$7.00 Respooling Charge.

EGT has Custom Wire Construction with a minimum purchase of 2000 feet! We can end the search...

Call Today for a Free Quote 1-800-348-4678

Series "301" Thermocouple Wire						
<u>"Solid"</u>	Most Common					
Part Number	AWG/Dia.	Finish Size				
K20-2-301	#20/.032"	.098" X .154"				

*Special Limits. Other Constructions Available, Consult Factory

Performance Capabilities

- Continuous temperature rating: 600 ° F (315 °C)
- Single reading: 800 °F (430 °C)

Features and Benefits

- Fused polyimide tape single conductor and duplex insulation for excellent protection
- Both legs have ASTM E 230 color code tracers for easy identification
- Excellent abrasion, moisture and chemical resistance
- Additional abrasion resistance with optional stainless steel overbraid
- Part Number K20-3-512-S is always STOCK in 100, 250, 500 and 1000-ft. spools

Applications

- Petrochemical plants
- Electric power plants
- Glass, ceramic & brick manufacturing
- Cryogenic applications
- Aerospace & Composite industry
- Automotive testing & Dynamometers

Construction Details

The Series 512 is a heavier duty version of our 511 Series construction, using the same polyimide insulation. Color coding is accomplished using the same colored thread "tracers". However, the Series 512 has a duplex insulation of polyimide tape. The extra wall of tape yields a construction with increased electrical and abrasion resistance. For higher temperature requirements, choose one of our fiberglass-insulated wires.

Performance Capabilities

- Continuous temperature rating: 1800 °F (980 °C)
- Single reading 2000 °F (1095 °C)

Features and Benefits

- Braided vitreous silica yarn single conductor and duplex insulation provides high temperature performance.
- Good chemical resistance, fair abrasion and moisture resistance.
- Additional abrasion resistance with stainless steel or alloy 600 wire overbraids.

Applications

- Furnace Survey Work
- Heat Treating
- Conveyorized Furnace Profiling
 Heat Treating Load and Limit Thermocouples

1800°F Continuous Temperature

Construction Details

Series 301 uses vitreous silica yarn as the insulation on both the single conductors and the overall covering. The "Old Timers" referred to this material a "Refisil". This yarn retains its flexibility after exposure to high temperatures. The vitreous silica yarn's purity performs better at high temperatures than other fibrous glass products. Testing has indicated that "contamination" will compromise this material's upper use temperature. For this reason, our standard offering is supplied without color-coding or impregnations; therefore the cut ends tend to flare. For higher temperatures, consider Series 350.

1<u>,</u>C

304

Serie

Thermocouple Wire

Performance Capabilities

- Continuous temperature rating: 900 °F (480 °C)
- Single Reading: 1000 °F (540 °C)

Features and Benefits

- Fiberglass braided single conductor and duplex insulation impregnated with modified resin to enhance abrasion resistance
- Impregnation retained to 400 °F (204 ° C)
- ASTM E 230 color-coded for easy identification
- Good moisture and chemical resistance, fair abrasion resistance
- Additional abrasion resistance with optional stainless steel or tinned copper overbraids

Applications

- Heat Treating, Furnace Survey Work, Foundries, Glass and Ceramic plants
- Plastics Industry; Extrusion, Injection Molding, Vacuum Molding

Series "304" Thermocouple Wire			
"Solid"	Most Common		
Part Number	AWG/Dia.	Finish Size	
J20-1-304	#20/.032"	.056" X .096"	
J24-1-304	#24/.020"	.045" X .072"	
K20-1-304	#20/.032"	.056" X .096"	
K24-1-304	#24/.020"	.045" X .072"	
T20-1-304	#20/.032"	.056" X .096"	
T24-1-304	#24/.020"	.045" X .072"	
S24-5-304	#24/.020"	.045" X .072"	
"Stranded"	Most Common		
Part Number	AWG/Dia.	Finish Size	
J20-3-304	#20Str/.038"	.064" X .112"	
J24-3-304	#24Str/.024"	.048" X .080"	
K20-3-304	#20Str/.038"	.064" X .112"	
K24-3-304	#24Str/.024"	.048" X .080"	

*Quantity's under 500' Require a \$7.00 Respooling Charge.

Performance Capabilities

- Continuous fiberglass temperature rating: 900 °F (480 °C)
- Continuous TFE temperature rating: 500 °F (260 °C)
- Single reading: 1000 °F (540 °C)

Features and Benefits

- Non-fused TFE tape and TFE coated fiberglass single conductor insulation provides excellent moisture and chemical resistance
- TFE coated fiberglass braid duplex insulation adds to moisture and chemical resistance
- TFE retained to 600 °F (315 °C).
- ASTM E 230 color coded for easy identification
- Excellent moisture and chemical resistance, good abrasion resistance
- Additional abrasion resistance with optional stainless steel overbraid

Construction Details

The 307 Series is designed for applications where a possibility of moisture along the unheated portion exists. While fiberglass has little moisture resistance, the use of TFE tape on the conductors provides moisture protection – even after short-term exposure to temperatures of 600 °F (315 °C). The Series 307 is constructed by first wrapping each conductor with TFE tape. Each conductor is then braided with TFE impregnated fiberglass. The two insulated conductors are then laid parallel and braided again with TFE impregnated fiberglass. The final operation involves heating the entire construction to fuse the insulations.

EGT has Custom Wire Construction with a minimum purchase of 2000 feet! We can end the search...

Call Today for a Free Quote

Construction Details

900°F

Continuous

Temperature

Series 304 is an economical braided glass that offers uniform quality for general applications requiring moderate abrasion and moisture resistance, with wide temperature capabilities. Each conductor is covered with a color coded glass braid. This braid is impregnated to enhance abrasion resistance and reduce fraying. The insulated single conductors are laid parallel and covered with another layer of woven glass. A final impregnation is then applied to the glass. For better moisture resistance, consider Series 307. For higher temperatures, consider Series 321. For better abrasion resistance, choose stainless steel overbraid.

220

2000

1900

1600

1400

1200

1000

800

1600 1400

1200

1000

800

307 Series

900°F Continuous Temperature

remperat			
Series "307" Thermocouple Wire			
"Solid"	Most Common		
Part Number	AWG/Dia.	Finish Size	
J20-1-307	#20/.032"	.072" X .118"	
K20-1-307	#20/.032"	.072" X .118"	

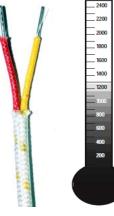
Thermocouple Wire

Series "32	21" Thermoc	ouple Wire
"Solid"	Most	<u>Common</u>
Part Number	AWG/Dia.	Finish Size
J20-1-321	#20/.032"	.082" X .140"
K20-1-321	#20/.032"	.082" X .140"

Construction Details

Series 321 incorporates High Temperature Glass in an economical braided construction for use in general applications. The braided high temperature yarn is applied in a unique manner that allows Series 321 to be competitively priced with other fiberglass constructions. It produces a finished, color-coded wire that performs at temperatures to 1600 °F (870 °C). Each conductor is covered with a color-coded high temperature fiberglass braid. This braid is then impregnated to enhance abrasion resistance and reduce fraying. The insulated single conductors are laid parallel and covered with another braid of high temperature fiberglass and impregnation.

Performance Capabilities


- Continuous temperature rating: 1300 °F (705 °C)
- Single reading 1600 °F (870 °C)

Features and Benefits

- High temperature fiberglass braid single conductor and duplex insulation impregnated with modified resin for added abrasion resistance.
- Impregnation retained to 400 °F (204 °C).
- ASTM E 230 color coded for easy identification.
- Good abrasion, moisture and chemical resistance.
- Additional abrasion resistance with optional overbraids.

Application

- Heat Treating
- Furnace Survey Work
- Steel and Aluminum Plants

1300°F Continuous Temperature

350

Series

2220°F

Continuous

Temperature

*The Series 321 is available with a full range of metallic coverings for improved abrasion resistance.

Certified Survey Wires

Series "3	50" Thermo	couple Wire											
<u>"Solid" Most Common</u>													
Series "350" Thermocouple Wire <u>"Solid"</u> Most Common Part Number AWG/Dia. Finish Size													
K20-2-350	#20/.032"	.100"X.154"											

Construction Details

Series 350 uses the ultimate high temperature flexible insulating system. The ceramic fiber yarn's upper temperature limit often exceeds the melting point of the material it's insulating. When an application requires flexible insulation, while pushing Type "K" or Type "N" to their extreme limits, ceramic fiber insulation is the ultimate choice. While Series 350 can be manufactured to your specifications, EGT supplies standard Series 350 without color-coding or impregnations. This minimizes contamination to the pure ceramic fiber yarn. Laboratory testing indicates that the introduction of even small amounts of impregnation can decrease the upper use temperature by as much as 1000° F (540 °C) in high temperature equipment. Each conductor is braided and laid parallel and covered with another layer of ceramic fiber braid overall.

Performance Capabilities

- Continuous temperature rating: 2200 °F (1205 °C)
- Single reading : 2600 °F (1430 °C)

Features and Benefits

- Ceramic fiber braid single conductors and duplex insulation; no impregnation for contamination free operation.
- Good abrasion and chemical resistance, fair moisture resistance.
- Additional abrasion resistance with optional alloy 600 wire overbraid.

Applications

- Steel and Aluminum Plants
- Heat Treating Uniformity Surveys
- Powdered Metal Sintering

Multi-Thermocouple / RTD Extension Wire

220°F Continuous Temperature

Construction Details

Series 900 is the classification for our family of overall shielded multi-pair cables. Series 900 is also available in UL Listings for PLTC (Power Limited Tray Cable) Applications.

Series 900 cable starts by insulating conductors with 220 °F (105 °C) PVC. For identification, one conductor of each pair is numbered and twisted with its counterpart. These "twisted pairs" are cabled with an additional insulated copper wire for communication use. The entire cable is wrapped with clear polyester tape to minimize the chance of short circuits to the cable's shield. under the final jacket of colorcoded PVC.

2000

1600 1400

1200

1000

800

600

400

Series

700

400°F Continuous Temperature

Series 700 RTD Wire <u>"Solid</u>" Most Common Part Number # of Wires Insulation RT3-22-4-701 PVC / 220F 3 RT3-22-8-704 3 FEP / 400F RT3-24-4-704 3 FEP / 400F RT3-24-8-705 3 Glass / 900F

Performance Capabilities

- Continuous temperature rating: 220 °F (105 °C)
- Other Insulations available for higher temperature rating. Minimum quantity 1000 Ft. (305 m)

Features and Benefits

- Extruded PVC Single Conductor and overall insulation
- Available in UL PLTC
- Aluminum/polyester shield with drain wire provides "noise" protection
- ASTM E 230 color coded
- Excellent moisture resistance, good abrasion and chemical resistance

NOTE: Other configurations available, consult factory.

Series "900"	'Multi-Ther	mocouple Wire
"Solid"	Most	Common
Part Number	AWG/Dia.	Finish Size
J20-5-904	#20/.032"	.350"/ 4 Pair
J20-5-908	#20/.032"	.440"/8 Pair
J20-5-912	#20/.032"	.535"/12 pair
K20-5-904	#20/.032"	.350"/4 Pair
K20-5-908	#20/.032"	.440"/8 Pair
K20-5-912	#20/.032"	.535"/12 Pair
K20-5-916	#20/.032"	.610"/16 Pair
K20-5-924	#20/.032"	.710"/24 Pair
T20-5-908	#20/.032"	.440"/8 Pair
T20-5-912	#20/.032"	.535"/12 Pair
T20-5-924	#20/.032"	.710"/24 Pair

An aluminized polyester tape shield is then spirally applied. A copper drain wire and heavy ripcord are longitudinally applied. We also offer this construction with the addition of spirally wrapped aluminized polyester tape and drain wire protecting each twisted pair of conductors.

Performance Capabilities

- Continuous temperature rating: 400 °F (204 °C)
- Single Short Term rating: 500 °F (260 °C)

Features and Benefits

- Extruded FEP single conductor and duplex insulation for excellent protection
- Available as UL Listed PLTC wire and cable
- ASTM E 230 color code for easy identification
- Excellent abrasion, moisture and chemical resistance
- Additional abrasion resistance with optional stainless steel and tinned copper wire overbraids
- Custom construction available

Applications

- Aerospace
- Industrial Equipment & Testing

110

- Food & Dairy
- Pharmaceutical .
- Plastics
 - Metal Treating

Construction Details

This three-strand RTD wire features excellent resistance to abrasion, chemicals, and moisture. Each silver-plated copper strand is color-coded with fluorinated ethylene propylene (FEP). The strands are twisted to increase flexibility and minimize electromagnetic noise, then jacketed in white FEP. The FEP insulation provides temperature resistance up to 400°F, and chemical resistance to solvents, acids, and oils. Additionally, the insulation protects the wire from thermal aging, while maintaining its strength and flexibility.

EGT has Custom Wire Construction with a minimum purchase of 2000 feet! We can end the search...

Call Today for a Free Quote

NOTES
111

SECTION 7

Thermocouple Reference Tables

GRADE: IRON VS. COPPER-NICKEL

TYPE "J" THERMOCOUPLE REFERENCE TABLES °C

N.I.S.T. Monograph 175 Revised to ITS-90

MAXIMUM TEMPERATURE GRADE LIMITS OF ERROR TEMPERATURE IN DEGREES °C Thermocouple Grade: Extension Grade: (Whichever is Greater) **REFERENCE JUNCTION AT 0°C** 32 1382°F 32 392°F Standard: Special: to to 0 750°C 0 200°C 2.2°C 0.75% 1.1°C 0.4% to to or or Thermoelectric Voltage in Millivolts Thermoelectric Voltage in Millivolts °C -10 -9 -8 -6 -2 -1 0 °C °C 0 1 2 8 9 10 °C -7 -5 -4 -3 3 4 5 6 7 -200 -8.095 -8.076 -8.057 -8.037 -8.017 -7.996 -7.976 -7.955 -7.934 -7.912 -7.890 -200 -7.731 -7.707 27.393 27.449 27.505 27.561 27.617 27.673 27.729 27.785 27.841 27 897 -7 890 -7 868 -7.846 -7.824 -7.801 -7 778 -7 755 -7 683 -7 659 -190 500 27 953 500 -190 -7.559 28.010 28.122 28.178 28.234 -7.534 -7.456 -7.429 -7.403 27.953 28.066 28.347 28.403 28.516 -180 -7.659-7.634 -7.610 -7.585 -7.508 -7.482 -180 510 28.291 28.460 510 -170 -7.403 -7.376 -7.348 -7.321 -7.293 -7.265 -7.237 -7.209 -7.181 -7.152 -7.123 -170 520 28.516 28.572 28.629 28.685 28,741 28,798 28.854 28.911 28.967 29.024 29.080 520 -160 -7.123 -7.094 -7.064 -7.035 -7.005 -6.975 -6.944 -6.914 -6.883 -6.853 -6.821 -160 530 29.080 29.137 29.194 29.250 29.307 29.363 29.420 29.477 29.534 29.590 29.647 530 -150 -6.821 -6.790 -6.759 -6.727 -6.695 -6.663 -6.631 -6.598-6.566-6.533 -6.500-150 540 29.647 29.704 29.761 29.818 29.874 29.931 29.988 30.045 30.102 30.159 30.216 540 -140 -6.500 -6.467 -6.433 -6.400 -6.366 -6.332 -6.298 -6.263 -6.229 -6.194 -6.159 -140 550 30.216 30.273 30.330 30.387 30.444 30.502 30.559 30.616 30.673 30.730 30.788 550 -5.946 -5.910 30.960 31.017 31.074 -130 -6.159 -6.124 -6.089 -6.054 -6.018 -5.982 -5.874 -5.838 -5.801 -130 560 30.788 30.845 30.902 31.132 31,189 31,247 31.304 31.362 560 31.881 -120 -5.801 -5.764 -5.727 -5.690-5.653 -5.616 -5.578 -5.541 -5.503 -5.465 -5.426 -120 570 31 362 31,419 31 477 31.535 31.592 31.650 31,708 31,766 31.823 31 939 570 -110 -5.426-5.388 -5.350-5.311 -5.272 -5.233 -5.194 -5.155 -5.116 -5.076 -5.037 -110 580 31.939 31.997 32.055 32.113 32.171 32.229 32.287 32.345 32.403 32.461 32.519 580 -100 -5.037 -4 997 -4 957 -4 917 -4.877 -4 836 -4 796 -4 755 -4714 -4 674 -4.633-100 590 32.519 32.577 32.636 32.694 32.752 32.810 32.869 32 927 32 985 33 044 33 102 590 600 -90 -4633-4 591 -4 550 -4509-4 467 -4 425 -4 384 -4 342 -4300-4 257 -4 215 -90 600 33 102 33 161 33 219 33 278 33 337 33 395 33 454 33 513 33 571 33 630 33 689 -80 -4.215-4.173 -4.130 -4.088 -4.045 -4.002 -3.959 -3.916 -3.872 -3.829-3.786 -80 610 33.689 33.748 33.807 33.866 33.925 33.984 34.043 34.102 34.161 34.220 34.279 610 -3.742 -3.698 -3.654 -3.610 -3.566 -3.478 -3.344 -70 34.516 34.575 34.635 34.873 -70 -3.786 -3.522 -3.434 -3.389 620 34.279 34.338 34 397 34.457 34.694 34.754 34 813 620 -3.344 -3.300 -3.255 -3.210 -3.120 -3.075 -2.984 -2.938 -2.893 -60 630 34,932 34,992 35.051 35.111 35.171 35.230 35,290 -60 -3.165 -3.029 34.873 35.350 35.410 35.470 630 -50 -2.893-2.847 -2.801 -2.755 -2.709-2.663 -2.617 -2.571-2.524 -2.478 -2.431 -50 640 35.470 35.530 35,590 35,650 35,710 35,770 35.830 35.890 35.950 36.010 36.071 640 -40 -2.431 -2.385 -2.338 -2.291 -2.244 -2.197 -2.150 -2.103 -2.055 -2.008 -1.961 -40 650 36.071 36.131 36.191 36.252 36.312 36.373 36.433 36.494 36.554 36.615 36.675 650 -30 -1.961 -1.913 -1.865 -1.818 -1.770 -1.722 -1.674 -1.626 -1.578 -1.530 -1.482 -30 660 36.675 36.736 36.797 36.858 36.918 36.979 37.040 37.101 37.162 37.223 37.284 660 -1.482 -20 -1.433 -1.385 -1.336 -1.288 -1.239 -1.190 -1.142 -1.093-1.044-0.995-20 670 37.284 37.345 37.406 37.467 37.528 37.590 37.651 37.712 37.773 37.835 37.896 670 680 -10 -0.995 -0.946 -0.896 -0.847 -0.798 -0.749 -0.699-0.650 -0.600 -0.550 -0.501 -10 37.896 37.958 38.019 38.081 38.142 38.204 38.265 38.327 38 389 38.450 38.512 680 0 -0.501 -0.451 -0.401 -0.351 -0.301 -0.251 -0.201 -0.151 -0.101 -0.050 0.000 0 690 38.512 38.574 38.636 38.698 38.760 38.822 38,884 38,946 39,008 39,070 39,132 690 0.101 0 151 0.202 0 303 0 354 0 4 5 6 0 507 39.318 39.381 700 Λ 0.000 0.050 0.253 0 4 0 5 ٥ 700 39.132 20 10/ 39 256 39 4 4 3 39 505 39 568 39 630 39 693 30 754 10 0.507 0.558 0.609 0.660 0.711 0.762 0.814 0.865 0.916 0.968 1.019 10 710 39 755 39,818 39,880 39.943 40.005 40.068 40.131 40 193 40 256 40.319 40.382 710 1019 1 071 1433 1 485 40.570 40.633 40.696 20 1 1 2 2 1 1 7 4 1 2 2 6 1 277 1 3 2 9 1.381 1537 20 720 40.382 40 445 40 508 40 759 40 822 40 886 40 949 41 012 720 1.849 2.006 2.059 41.391 30 1.537 1.589 1.641 1.693 1.745 1.797 1.902 1.954 30 730 41.012 41.075 41.138 41.201 41.265 41.328 41.455 41.518 41 581 41.645 730 2.059 2.111 2.164 2.216 2.374 2.427 2.480 2.532 2.585 40 41.835 41.899 41.962 42.026 42.090 42.153 40 2.269 2.322 740 41.645 41.708 41.772 42.217 42.281 740 50 2.585 2.691 2.744 2.797 2.850 2.903 2.956 3.009 3.062 3.116 50 750 42.408 42.472 42.536 42.599 750 2.638 42.281 42.344 42.663 42.727 42.791 42.855 42 910 42 919 42 983 60 3.116 3.169 3.222 3.275 3.329 3.382 3.436 3 4 8 9 3.543 3.596 3.650 60 760 43.047 43.111 43.175 43.239 43.303 43.367 43.431 43 495 43 559 760 3.703 3.757 3.810 3.864 3.918 3.971 4.025 4.079 4.133 4.187 43.559 43.624 43.688 43.752 43.817 43.881 43.945 44.010 44.074 44.203 70 3.650 70 770 44.139 770 80 4.187 4.240 4.294 4.348 4,402 4.456 4.510 4.564 4.618 4.672 4.726 80 780 44.203 44.267 44.332 44.396 44.461 44.525 44.590 44.655 44.719 44,784 44.848 780 ۹N 4.781 4.835 4 889 4 943 4 997 5.106 5.269 90 790 44.848 44.913 45.042 45.107 45.171 45.236 45 301 45.365 45.494 4.726 5 0 5 2 5.160 5.215 44 977 45 430 790 100 5.269 5.323 5.378 5.432 5.487 5.541 5.595 5.650 5.705 5.759 5.814 100 800 45.494 45.559 45.624 45.688 45.753 45.818 45.882 45.947 46.011 46.076 46.141 800 5.977 5.814 5.923 6.032 6.087 6.141 6.196 6.306 6.360 110 46.334 46.399 46.464 46.528 46.593 46.657 110 5.868 6.251 810 46.141 46.205 46.270 46.722 46 786 810 6.799 6.854 6 360 6.415 6470 6 5 2 5 6 5 7 9 6 6 3 4 6 6 8 9 6744 6.909 46.786 46.851 46 980 47 044 47 109 47 173 47 238 47 302 120 120 820 46 915 47 367 47 431 820 7.184 130 6 9 9 9 6 9 6 4 7 0 1 9 7 074 7 1 2 9 7.239 7 294 7 349 7 404 7 4 5 9 130 830 47 431 47 495 47 560 47 624 47 688 47 753 47 817 47 881 47 946 48 010 48 074 830 140 7.459 7.514 7.569 7.624 7.679 7.734 7.789 7.844 7.900 7.955 8.010 140 840 48.074 48.138 48.202 48.267 48.331 48.395 48.459 48.523 48.587 48.651 48.715 840 150 8.010 8.065 8,120 8.175 8.231 8,286 8.341 8.396 8.452 8.507 8.562 150 850 48,715 48,779 48,843 48,907 48,971 49,034 49.098 49.162 49.226 49,290 49 353 850 8.562 8,618 8,673 8,728 8,783 8,839 8 894 8,949 9.005 9,060 9.115 160 860 49.353 49.417 49 544 49 608 49,735 49 799 49 862 49,926 10 080 860 160 49.481 49.672 9.448 49.989 50.052 50.179 50.243 50.306 50.369 50.432 50.495 170 9.115 9.171 9.226 9.282 9.337 9.392 9.503 9.559 9.614 9.669 170 870 50.116 50 559 50.622 870 9,780 9.836 9.891 9.947 10.002 10.057 10.113 10.224 50.622 50.685 50.748 50.811 50.874 50.937 51.000 51.063 51.188 180 9.669 9.725 10.168 180 880 51.126 51.251 880 190 10.224 10.279 10.335 10.390 10.446 10.501 10.557 10.612 10.668 10.723 10.779 190 890 51.251 51.314 51.377 51.439 51.502 51.565 51.627 51.690 51.752 51.815 51.877 890 200 10.779 10.834 10.890 10.945 11.001 11.056 11.112 11.167 11.223 11.278 11.334 200 900 51.877 51.940 52.002 52.064 52.127 52.189 52.251 52.314 52.376 52,438 52.500 900 11.334 11.389 11.445 11.501 11.556 11.612 11.667 11.723 11.778 11.834 11.889 210 910 52.500 52.562 52.624 52.686 52.748 52.810 52.872 52.934 52.996 53.057 53.119 910 210 53.304 53.366 53.427 220 11.889 11.945 12,000 12,056 12.111 12.167 12,222 12,278 12.334 12,389 12,445 220 920 53,119 53,181 53.243 53,489 53,550 53,612 53.673 53.735 920 12.500 12.556 12,944 12.445 12.611 12.667 12.722 12,778 12,833 12,889 13,000 230 930 53,735 53,796 53 857 53,919 53,980 54,041 54,102 54.164 54.225 930 230 54,286 54 347 240 13.000 13.056 13.111 13.167 13.222 13.278 13.333 13 389 13 444 13 500 13 555 240 940 54.347 54.408 54.469 54.530 54.591 54.652 54 713 54 773 54 834 54 895 54 956 940 250 13 555 13.611 13.666 13.722 13.777 13.833 13,888 13.944 13.999 14.055 14,110 250 950 54,956 55,016 55,077 55.138 55.198 55.259 55 319 55 380 55 440 55 501 55 561 950 260 14 110 14 166 14 221 14.277 14.332 14.388 14 443 14 499 14 554 14 609 14 665 260 960 55 561 55 622 55 682 55 742 55 803 55 863 55 923 55 983 56 043 56 104 56 164 960 270 14 665 14 720 14 776 14 831 14 887 14 942 14 998 15 053 15 109 15 164 15 219 270 970 56 164 56 224 56 284 56 344 56 404 56 464 56 524 56 584 56 643 56 703 56 763 970 280 15.219 15.275 15.330 15.386 15.441 15.496 15.552 15.607 15.663 15.718 15.773 280 980 56.763 56.823 56.883 56.942 57.002 57.062 57.121 57.181 57.240 57.300 57.360 980 15.940 15.995 990 57.538 57.597 290 15.773 15.829 15.884 16.050 16.106 16.161 16.216 16.272 16.327 290 57.360 57.419 57.479 57.657 57.716 57.776 57.835 57.894 57 953 990 300 16.327 16.438 16.493 16.549 16.604 16.881 300 1000 57.953 58.013 58.072 58.131 58.190 58.249 58.368 58.427 58.545 1000 16.383 16.659 16.715 16.770 16.825 58.309 58,486 16.881 1010 1010 310 16,936 16,991 17.046 17.102 17.157 17,212 17.268 17.323 17.378 17.434 310 58,545 58,604 58.663 58.722 58.781 58.840 58,899 58,957 59,016 59.075 59.134 17.434 17,489 17.544 17 599 17,655 17,710 17,765 17,820 17,876 17,931 17,986 320 1020 59 134 59 193 59,252 59 310 59 369 59.428 59,487 59 545 59,604 59,663 59 721 1020 320 330 17.986 18.041 18.097 18.152 18.207 18.262 18.318 18.373 18.428 18,483 18.538 330 1030 59.721 59.780 59.838 59.897 59.956 60.014 60.073 60.131 60.190 60.248 60.307 1030 18.814 60.482 60.540 60.599 340 18.538 18.594 18.649 18.704 18.759 18.870 18.925 18.980 19.035 19.090 340 1040 60.307 60.365 60.423 60.657 60.715 60.774 60.832 60.890 1040 350 19.090 19.146 19.201 19.256 19.311 19.366 19.422 19.477 19.532 19.587 19.642 350 1050 60.890 60.949 61.007 61.065 61.123 61.182 61.240 61.298 61.356 61.415 61.473 1050 19808 19863 19918 19 973 20.028 360 1060 61.473 61.531 61 589 61.647 61.705 61.763 61.822 61.880 61.938 360 19.642 19 697 19753 20.083 20 1 39 20 194 61 996 62 054 1060 20.194 20,249 20 304 20.359 20.414 20.469 20.525 20.580 20.635 20.690 1070 62.054 62.112 62,170 62,228 62,286 62,344 62.402 62,460 62,518 62.576 370 20.745 370 62.634 1070 380 20.745 20.800 20.855 20.911 20.966 21.021 21.076 21.131 21.186 21,241 21,297 380 1080 62,634 62,692 62,750 62,808 62,866 62,924 62,982 63,040 63,098 63,156 63,214 1080 21.683 390 21,297 21,352 21,407 21.462 21.517 21.572 21.627 21,738 21,793 21.848 390 1090 63,214 63,271 63,329 63,387 63,445 63,503 63 561 63.619 63.677 63 734 63 792 1090 400 21 848 21 903 21 958 22 014 22 069 22 124 22 179 22 234 22 289 22 345 22 400 400 1100 63,792,63,850,63,908,63,966,64,024,64,081 64 139 64 197 64 255 64.313 64.370 1100 22,400 22,455 22,510 22,565 22,620 22,676 22,731 22,786 22,841 22,896 22,952 410 1110 64.370 64.428 64.486 64.544 64.602 64.659 64,717 64,775 64,833 64,890 64,948 1110 410 420 22,952 23,007 23,062 23 117 23 172 23 228 23 283 23,338 23 393 23 4 4 9 23 504 420 1120 64,948 65,006 65,064 65,121 65,179 65,237 65 295 65 352 65 410 65 468 65 525 1120 23.946 23.504 23.614 23.670 23.725 23.780 23.835 23.891 24.001 24.057 65.525 65.699 65.756 65.814 65.872 65.929 65.987 66.045 430 23 559 430 1130 65.583 65.641 66.102 1130 440 24.057 24.112 24.167 24.223 24.278 24.333 24.389 24.444 24.499 24.555 24.610 440 1140 66.102 66.160 66.218 66.275 66.333 66.391 66.448 66.506 66.564 66.621 66.679 1140 450 24.610 24.665 24.721 24.776 24.832 24.887 24.943 24.998 25.053 25.109 25.164 450 1150 66.679 66.737 66.794 66.852 66.910 66.967 67.025 67.082 67.140 67,198 67,255 1150 460 25,164 25,220 25,275 25.331 25.386 25.442 25,497 25.553 25,608 25.664 25,720 460 1160 67.255 67.313 67.370 67.428 67.486 67.543 67.601 67.658 67.716 67.773 67.831 1160 470 25.720 25.775 25.831 25.886 25.942 25.998 26.053 26.109 26.165 26.220 26.276 470 1170 67.831 67.888 67.946 68.003 68.061 68.119 68.176 68.234 68.291 68.348 68.406 1170 26.443 26.499 26.555 26.610 26.666 480 68.578 68.636 68.693 68.751 68.808 68.865 480 26.276 26.332 26.387 26.722 26.778 26.834 1180 68.406 68.463 68.521 68.923 68.980 1180 490 68.980 69.037 69.095 69.152 69.209 69.267 69.324 69.381 69.439 69.496 69.553 1190 490 26.834 26.889 26.945 27.001 27.057 27.113 27.169 27.225 27.281 27.337 27.393 1190 °C -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 °C °C 0 1 2 3 4 5 6 7 9 10 °C 8

Type "J" Thermocouple Reference Tables °F N.I.S.T. Monograph 175 Revised to ITS-90

GRADE: **IRON VS. COPPER-NICKEL**

Terreno MUMUM LUPUE AL MURE AL	1000	NOLOGIES, INC.							1.5.1.1	nonogi	apri i	/0110	noou		00						NUN	v 3.	UUF			
0 0 5 720° 0 7 7 1 1° 6 1 3 2 1 0 7 7 0 0 7 7 0 0 7 6 5 7 0 7 6 5 7 0 7 7 0 7 7 0 7 <td>15LH</td> <td>VOLUGIES, INC.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ATURE</td> <td>GRADE</td> <td></td> <td>TEM</td> <td>DEDAT</td> <td></td> <td>N DEC</td> <td>DEES «</td> <td>F</td>	15LH	VOLUGIES, INC.						ATURE	GRADE												TEM	DEDAT		N DEC	DEES «	F
0 0 5 720° 0 7 7 1 1° 6 1 3 2 1 0 7 7 0 0 7 7 0 0 7 6 5 7 0 7 6 5 7 0 7 7 0 7 7 0 7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td>Exte</td> <td>ension</td> <td>Grade</td> <td>:</td> <td></td> <td>Sta</td> <td></td> <td></td> <td>ver is (</td> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							:	Exte	ension	Grade	:		Sta			ver is (/								
T -0 -9 -1 -8 -3 -2 -1 0 T 10 D T 0 0 7 0 0 100																1.					IXE1		2 501		AT JE	
1 1 1 1 7 6 5 4 3 2 1 0 1 100 4000 <																				-						
190	٥F	10	0									•	٥E		10	0									•	٥E
133 130 <td></td> <td>-10</td> <td>-9</td> <td>-8</td> <td>-1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>		-10	-9	-8	-1							-						•							-	
130 7.88 <th7.88< th=""> 7.88 7.88 7</th7.88<>		-8.030	-8 019	-8 008	-7 996																					350 360
-0.0 -0.00 -0.00 -0.00 -0.00 -0.00 0.00					-7.878	-7.866	-7.854	-7.841	-7.829	-7.816	-7.804	-7.791	-320		10.101	10.131	10.162	10.193	10.224	10.255	10.285	10.316	10.347			370
120 250 750 <td></td> <td>380 390</td>																										380 390
0.20 -2.2 -2.20																										390 400
1200 7.000 7.000 6.0000 6.000 6.000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>400</td></th<>																										400
1200 4.800 4.801 4.800 4.800 4.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 7.7000 7.700 7.700 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>420</td></th<>																										420
1249 1716 6.669 4.661 4.664 4																										430 440
120 6.550 6.550 6.500 6																										450
120 6.109 6.109 6.101 6.002 6.002 4.002 4.00 13.04 13.54 13.55 13.56 13.64 13	-230	-6.536	-6.518	-6.500	-6.481	-6.463	-6.444	-6.426	-6.407	-6.388	-6.370	-6.351	-230			12.907	12.938	12.969	13.000	13.031	13.062	13.093	13.123	13.154	13.185	460
200 5.90																										470 480
180 5.533 5.532 5.531 5.532 5.531 5																										490
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																										500
160 5.125 5.103 5.010 5.027 5.027 5.287 5.297 5.287 5.297 5.287 5.297 5.287 5.297 5.287 5																										510 520
1-00 -4.678 -4.653 -4.639 -4.644 -4.449 -4.442 -4.443 -4.444 -4.449 -4.449 -4.449 -4.449 -4.449 -4.449 -4.449 -4.449 -4.449 -4.449 -4.449 -4.444 -4.444 -4.444 -4.444 -4.444 <td></td> <td>530</td>																										530
130 4.449 4.449 4.442 4.449 4.423 4.421 4.137 4.100 4.121 4.107 4.100 1.1011													-150	540	15.343											540
1:20 4.215 4.126 4.124 4.124 4.107 4.007 4.006																										550 560
100 3.373 3.171 3.088 3.664 3.464 3.464 3.464 3.444 3.44 3.426 3.220 3.165 3.100 1.001 1.024 1.706 1.																										570
90 3483 3448 3449 3449 3449 3449 3449 3344 3320 3225 2270 3264 1280 1738 17341 17321 17401 1744 1746 1746 1747 700 2259 2289 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2298 2283 2237 220 225 2290 2285 2207 227 2217 11211 1121 1121 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>580</td></t<>																										580
80 3.245 3.220 3.185 3.170 3.044 3.010 3.044 3.010 3.044 3.010 3.044 3.010 3.044 3.010 3.044 3.010 3.044 3.010 3.044 3.010 3.044 3.010 3.014 3.010 3.014 3.010 3.014 3.010 3.014 3.010 3.014 3.010 3.014 1.010 1.020 1.023 1.026 1.020 1.021 1.022 1.023 1.024 1.025 1.025 1.025 1.026 1.024 1.025 1.025 1.026 1.024 1.025 1.																										590 600
-60 -240 -2474 -248 -247 -248 -227 -249 -222 -256 -248 -247 -248 -257 -249 -223 -246 -248 -246 -144 1445 1448 1484 1484 1848 1838 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>610</td></th<>																										610
-50 -2483 -2473 -2407 -2273 -2409 -2273 -2409 -2673 -2483 -2487 -1858 -1859 18500 18530 1856 18500 18530 1856 18500 18530 1857 1838 1838 1856 1836 1837 1838																										620
-0 -0 -223 -217 -2146 -2148 -200 -201 -1961 -400 -1963 -1884 1885 1826 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>630 640</td></t<>																										630 640
-30 -1.961 -1.984 -1.884 -1.885 -1.828																										650
-10 -1428 -1401 -1374 -	-30	-1.961	-1.934	-1.908	-1.881	-1.855	-1.828	-1.802	-1.775	-1.749	-1.722	-1.695	-30	660	19.029	19.060	19.090	19.121	19.152	19.182	19.213	19.244	19.274	19.305	19.336	660
0 -1.158 -1.11 -1.104 -1.022 -0.995 -0.967 -0.940 -0.913 -0.2013 20.102 20.112 20.102 20.112 20.102 20.123 20.102 20.123 20.102 20.123 20.103 20.149 20.245 20.255 20.265 20.265 20.265 20.265 20.215 20.102 20.112 20.102 20.113 20.1143 21.149 21.257 21.002 21.012 21.012 21.012 21.020 22.032 22.03 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 2																										670 680
10 -0.611 -0.633 -0.566 -0.528 -0.651 -0.262 -0.263 20.663 20.684 20.715 20.143 21.13 11.13	0																									690
20 -0.334 -0.029 -0.223 -0.223 -0.168 -0.108 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.076 -0.076 -0.076 -0.078 0.066 -0.278 -0.066 -0.078 0.066 -0.078 0.066 -0.078 0.070 0.078 0.078 0.076 0.079 0.070 0.074 0.762 0.791 50 750 1.089 0.480 0.676 0.506 0.507 0.507 1.056 1.561 1.																										700
30 -0.056 -0.028 0.009 0.039 0.037 0.365 0.394 0.422 0.478 0.507 40 740 21.142 21.205 21.235 21.382 22.482 22.482 22.482 22.482 22.482 22.482 22.482 22.482 22.482 22.482 22.482 22.482 22.480 <td></td> <td>710 720</td>																										710 720
50 0.507 0.535 0.563 0.592 0.620 0.640 0.677 0.701 0.76 0.791 50 750 21.87 21.817 21.812 21.812 21.902 21.940 21.917 22.003			-0.028									0.225	30	730	21.174	21.205	21.235	21.266	21.297	21.327	21.358	21.389	21.419	21.450	21.480	730
60 0.791 0.818 0.876 0.905 0.833 0.962 0.991 1.019 1.048 1.076 600 770 2.070 2.216 2.216 2.216 2.216 2.216 2.216 2.216 2.216 2.216 2.246 2.247 2.238 2.238 2.240 2.437 2.238 2.238 2.238 2.246 2.246 2.246 2.246 2.246 2.246 2.246 2.246 2.248 2.246 2.248 2.246 2.248 2.248 2.246 2.248 2.246 2.246 2.246 2.247 2.246 2.246 2.248 2.248 2.240 0 0 000 2.338 2.341 2.330 2.328 2.328 2.328 2.328 2.328 2.328 2.328 2.328 2.328 2.328 2.328 2.329 2.328																										740
10 10.1076 11.05 11.34 11.62 1.191 1.200 1.249 1.271 1.366 1.381 1.364 1.392 1.421 1.450 1.479 1.262 2.2676 2.2180 2.2492 2.2582 2.2582 2.291 2.292 2.292 <																										750 760
90 1.652 1.681 1.710 1.739 1.768 1.779 1.826 1.884 1.913 1.942 90 790 23.013 23.104 23.105 23.136 23.166 23.197 23.228 23.289 23.207 730 100 1.942 1.972 2.001 2.030 2.059 2.832 2.326 2.330 2.3316 2.316 2.3179 2.3742 2.352 2.356 2.356 2.557 2.557 2.567 2.567 2.567 2.567 2.567 2.568 2.517 2.468 2.477 2.762 2.710 2.811 2.460 2.477 2.703 2.732 2.762 2.711 1.80 3.056 3.116 1.30 830 2.4241 2.4.727 2.4.03 2.4.333 2.4.64 2.4.472 2.4.02 2.4.333 2.4.42 2.4.118 2.4.18	70	1.076	1.105	1.134	1.162	1.191	1.220	1.249	1.277	1.306	1.335	1.364	70	770	22.400	22.430	22.461	22.492	22.522	22.553	22.584	22.614	22.645	22.676	22.706	770
100 1.942 1.972 2.001 2.030 2.059 2.088 2.117 2.146 2.175 2.205 2.234 100 800 23.320 23.360 23.381 23.412 23.442 23.473 23.504 23.552 23.554 23.594 23.594 23.594 23.594 23.572 24.652 24.552 24.552 24.552 24.552 24.552 24.553 23.567 23.671 44.554 44.54																										780 790
110 2234 2.63 2.922 2.322 2.351 2.300 2.439 2.468 2.479 2.527 110 810 23.627 23.667 23.688 23.719 23.740 23.740 23.740 23.740 23.740 23.740 23.740 24.741 24.741 24.741 24.741 24.751 24.007 24.118 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.149 24.332 24.332 24.353 24.364 24.319 24.461 24.752 24.702 24.732 24.730																										800
130 2.821 2.860 2.880 2.909 2.938 2.997 3.027 3.057 3.066 3.116 130 830 24.212 24.303 24.333 24.364 24.352 24.456 24.467 24.456 24.467 24.475 24.102 24.333 24.344 24.972 24.102 24.303 24.343 24.346 24.972 24.102 24.333 24.466 24.467 24.476 24.476 24.476 24.476 24.477 24.702 24.733 24.764 24.979 24.161 24.612 24.612 24.617 24.610 26.617 25.648 25.97 25.98 25.38 25.380 25.141 25.142 25.147 25.98 25.9	440	0.004	0.000	0.000	0.000	0.054	0.000	0.400	0.400	0.400	0.407	0.507														810
140 3.116 3.145 3.175 3.204 3.224 3.264 3.293 3.353 3.382 3.412 140 840 24.579 24.610 24.612 24.702 24.702 24.705 24.826 24.856 84 150 3.412 3.442 3.471 3.501 3.503 3.600 3.650 3.679 3.709 1.50 850 24.856 24.856 24.856 24.856 24.856 25.226 25.272 25.288 25.318 25.349 25.302 25.318 25.419 25.473 25.564 25.554 25.556 25.556 25.572 25.586 25.572 25.586 25.572 25.586 25.572 25.586 25.587 25.587 25.586 25.572 25.586 25.572 25.586 25.572 25.586 25.572 25.586 25.572 25.586 26.577 25.588 25.781 8 80 3.717 4.077 4.977 4.977 4.907 190 800 25.11 25.142 26.433 25.472 26.585 25.576 26.567 26.646 26.677																										820 830
150 3.412 3.442 3.471 3.501 3.531 3.560 3.650 3.679 3.79 150 850 24.856 24.887 24.918 24.949 24.979 25.010 25.011 25.012 25.013 25.134 25.134 25.134 25.473 88 160 3.709 3.739 3.769 3.769 3.791 4.007 4.007 4.007 160 860 25.144 25.159 25.262 25.572 25.582 25.972 25.689 25.072 25.989 25.002 25.972 25.989 25.002 25.972 25.989 25.002 25.972 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 25.989 25.002 26.300 26.400 86.118 840 25.11 10 26.11 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>840</td></td<>																										840
170 4.007 4.037 4.067 4.097 4.127 4.127 4.246 4.276 4.306 170 870 25.473 25.542 25.565 25.562 25.562 25.562 25.562 25.596 25.967 25.967 25.987 5.985 5.986 5.918 5.118 5.118 5.118 5.118 5.118 5.118 5.118 5.118 5.118 5.118 5.118 5.118 5.414 5.4	150			3.471	3.501	3.531	3.560	3.590	3.620	3.650	3.679	3.709	150	850	24.856	24.887	24.918	24.949	24.979	25.010	25.041	25.072	25.103	25.134	25.164	850
180 4.306 4.336 4.366 4.366 4.466 4.466 4.466 4.466 4.667 4.667 4																										860 870
190 4.606 4.636 4.666 4.696 4.726 4.757 4.877 4.877 4.907 190 890 26.090 26.121 26.152 26.183 26.242 26.245 26.267 26.307 26.338 26.369 26.400 889 200 4.907 4.937 4.967 4.997 5.028 5.058 5.088 5.118 5.148 5.178 5.209 200 900 26.400 26.431 26.462 26.493 26.524 26.555 26.568 26.617 26.648 26.679 26.710 990 210 5.209 5.299 5.299 5.300 5.420 5.450 5.480 5.111 210 910 26.710 26.741 26.715 27.062 27.113 27.144 27.157 27.206 27.207 77.288 27.206 27.217 27.268 27.113 27.144 27.157 27.660 27.577 7.584 27.597 2.7.60 27.577 2.7.88 2.7.99 2.7.60 2.7.175 2.7.66 2.7.977 2.7.882 2.7.60 2.7.612 2.7.65																										870 880
210 5.209 5.239 5.269 5.299 5.329 5.360 5.390 5.420 5.450 5.480 5.511 210 910 26.710 26.741 26.772 26.803 26.834 26.865 26.896 26.927 26.958 26.989 27.020 910 220 5.511 5.541 5.571 5.602 5.632 5.723 5.753 5.783 5.814 200 920 27.020 27.0151 27.144 27.175 27.206 27.237 27.68 27.599 27.102 27.113 27.144 27.175 27.486 27.579 27.610 27.642 920 27.030 27.362 27.393 27.425 27.486 27.177 27.848 27.891 27.929 27.892 27.800 27.891 27.129 27.182 27.393 27.442 27.455 27.486 27.179 27.848 27.891 27.920 27.891 27.920 27.891 27.920 27.891 27.933 27.442 27.455 27.486 27.179 27.848 28.91 28.141 28.172 28.203 28.234																										890
220 5.511 5.541 5.571 5.602 5.632 5.662 5.925 5.723 5.783 5.814 220 920 27.020 27.051 27.082 27.113 27.144 27.175 27.206 27.237 27.268 27.299 27.330 92 230 5.814 5.844 5.874 5.905 5.935 5.965 5.996 6.026 6.066 6.087 6.117 230 27.330 27.362 27.333 27.424 27.455 27.460 27.177 27.548 27.579 27.610 27.642 930 240 6.117 6.147 6.178 6.482 6.512 6.543 6.573 6.604 6.639 6.726 500 27.953 27.948 28.199 28.141 28.172 28.203 28.243 28.452 28.161 28.047 28.079 28.485 28.516 28.547 28.579 99 27.933 27.948 28.193 28.422 28.453 28.485 28.516 28.547 28.579 99 27.933 28.612 28.042 28.612 28.612 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>900</td></t<>																										900
230 5.814 5.844 5.874 5.905 5.935 5.965 5.996 6.026 6.087 6.117 230 930 27.330 27.362 27.393 27.424 27.455 27.486 27.517 27.548 27.579 27.610 27.642 930 240 6.117 6.147 6.178 6.208 6.239 6.269 6.299 6.330 6.360 6.391 6.421 240 940 27.642 27.673 27.770 27.785 27.860 27.977 27.829 27.860 27.981 27.922 27.953 940 250 6.421 6.452 6.452 6.543 6.573 6.604 6.665 6.726 250 950 27.985 28.016 28.047 28.109 28.114 28.172 28.203 28.242 28.553 28.676 28.779 27.610 27.642 970 2700 7.031 7.061 7.99 7.127 7.166 7.787 7.787 7.767 7.787 28.767 28.779 970 28.767 28.779 970 7.612																										910 920
250 6.421 6.452 6.482 6.512 6.543 6.573 6.604 6.634 6.665 6.695 6.726 250 950 27.935 27.985 28.016 28.047 28.078 28.109 28.141 28.172 28.203 28.234 28.266 990 260 6.726 6.756 6.787 6.817 6.848 6.878 6.909 6.939 6.970 7.000 7.031 260 960 28.266 28.297 28.383 28.359 28.391 28.422 28.453 28.485 28.516 28.547 28.579 990 270 7.031 7.061 7.092 7.122 7.153 7.184 7.214 7.245 7.275 7.306 7.336 270 970 28.579 28.610 28.612 28.031 28.412 28.767 28.79 28.861 28.892 28.819 29.049 29.049 29.049 29.049 29.049 29.049 29.040 29.301 29.332 29.363 29.395 29.462 29.458 29.489 29.511 990 29.552 2	230	5.814	5.844	5.874	5.905	5.935	5.965	5.996	6.026	6.056	6.087	6.117	230	930	27.330	27.362	27.393	27.424	27.455	27.486	27.517	27.548	27.579	27.610	27.642	930
260 6.726 6.756 6.787 6.817 6.848 6.878 6.909 6.939 6.970 7.000 7.031 260 960 28.266 28.297 28.328 28.359 28.391 28.422 28.453 28.485 28.516 28.547 28.579 99 270 7.031 7.061 7.092 7.122 7.153 7.184 7.214 7.245 7.275 7.306 7.336 270 990 28.579 28.610 28.641 28.672 28.704 28.735 28.767 28.798 28.289 28.891 28.492 28.485 28.59 28.610 28.610 28.612 28.613 28.612 28.613 28.614 28.612 28.613																										940
270 7.031 7.061 7.092 7.122 7.153 7.184 7.244 7.245 7.275 7.306 7.336 270 970 28.579 28.610 28.641 28.672 28.704 28.735 28.767 28.798 28.982 28.982 29.9861 28.892 990 28.610 28.641 28.672 28.704 28.735 28.767 28.798 28.982 28.982 28.982 990 29.080 29.112 29.143 29.175 29.069 990 29.06 29.238 29.269 29.018 29.049 29.080 29.112 29.143 29.175 29.269 990 29.266 29.238 29.269 29.011 29.332 29.363 29.373 29.773 29.869 29.8861 28.892 28.810 29.836 29.049 29.049 29.049 29.049 29.073 29.073 29.073 29.073 29.073 29.073 29.849 29.51 990 29.51 990 29.610 29.616 29.647 29.619 29.710 29.742 29.773 29.808 10.01 29.836 10.00 <td></td> <td>950 960</td>																										950 960
290 7.642 7.673 7.704 7.734 7.765 7.795 7.826 7.857 7.887 7.918 7.949 290 990 29.206 29.238 29.269 29.301 29.332 29.363 29.395 29.426 29.458 29.489 29.521 952 300 7.949 7.979 8.010 8.041 8.071 8.102 8.133 8.163 8.194 8.225 8.255 300 1000 29.521 29.522 29.584 29.616 29.647 29.679 29.710 29.742 29.773 29.805 29.805 29.805 1000 29.521 29.522 29.584 29.616 29.647 29.679 29.710 29.742 29.773 29.805 29.805 29.805 29.905 30.026 30.058 30.089 30.121 30.153 100 320 8.562 8.593 8.624 8.654 8.685 8.716 8.747 8.777 8.808 8.839 8.69 320 1020 30.184 30.216 30.248 30.279 30.311 30.343 30.375 <t< td=""><td>270</td><td>7.031</td><td>7.061</td><td>7.092</td><td>7.122</td><td>7.153</td><td>7.184</td><td>7.214</td><td>7.245</td><td>7.275</td><td>7.306</td><td>7.336</td><td>270</td><td>970</td><td>28.579</td><td>28.610</td><td>28.641</td><td>28.672</td><td>28.704</td><td>28.735</td><td>28.767</td><td>28.798</td><td>28.829</td><td>28.861</td><td>28.892</td><td>970</td></t<>	270	7.031	7.061	7.092	7.122	7.153	7.184	7.214	7.245	7.275	7.306	7.336	270	970	28.579	28.610	28.641	28.672	28.704	28.735	28.767	28.798	28.829	28.861	28.892	970
300 7.949 7.979 8.010 8.041 8.071 8.102 8.133 8.163 8.194 8.225 8.255 300 1000 29.522 29.552 29.616 29.617 29.679 29.710 29.742 29.773 29.805 29.836 100 310 8.255 8.266 8.317 8.347 8.378 8.409 8.439 8.470 8.501 8.532 8.562 310 1010 29.836 29.900 29.911 29.963 29.995 30.026 30.058 30.089 30.121 30.153 1010 320 8.562 8.593 8.624 8.654 8.685 8.716 8.747 8.777 8.808 8.839 8.869 320 1020 30.153 30.184 30.216 30.248 30.279 30.311 30.3375 30.406 30.438 30.470 1020 320 8.698 8.900 8.931 8.962 9.915 9.146 9.177 30 1030 30.47																										980 990
310 8.255 8.286 8.317 8.347 8.378 8.409 8.439 8.470 8.501 8.532 8.562 310 1010 29.836 29.900 29.931 29.963 29.995 30.026 30.089 30.121 30.153 10'' 320 8.562 8.593 8.624 8.654 8.685 8.716 8.747 8.777 8.808 8.839 8.869 320 1020 30.153 30.184 30.216 30.248 30.279 30.311 30.343 30.375 30.406 30.438 30.470 10'' 330 8.869 8.900 8.931 8.962 8.992 9.023 9.054 9.085 9.115 9.146 9.177 30 1030 30.470 30.555 30.597 30.629 30.600 30.692 30.724 30.756 30.788 10'' 340 9.177 9.208 9.238 9.269 9.300 9.311 9.362 9.392 9.423 9.454 9.4																										
330 8.869 8.900 8.931 8.962 8.992 9.023 9.054 9.085 9.115 9.146 9.177 330 1030 30.470 30.502 30.533 30.565 30.597 30.629 30.660 30.692 30.724 30.756 30.788 1030 340 9.177 9.208 9.238 9.269 9.300 9.331 9.362 9.392 9.423 9.454 9.485 340 1040 30.788 30.819 30.813 30.915 30.947 30.979 31.011 31.043 31.074 31.106 1040	310	8.255	8.286	8.317	8.347	8.378	8.409	8.439	8.470	8.501	8.532	8.562	310	1010	29.836	29.868	29.900	29.931	29.963	29.995	30.026	30.058	30.089	30.121	30.153	1010
340 9.177 9.208 9.238 9.269 9.300 9.331 9.362 9.392 9.423 9.454 9.485 340 1040 30.788 30.819 30.851 30.883 30.915 30.947 30.979 31.011 31.043 31.074 31.106 104																										
°F 10 9 8 7 6 5 4 3 2 1 0 °F °F 10 9 8 7 6 5 4 3 2 1 0 °F																										
	°F	10	9	8	7	6	5	4	3	2	1	0	°F	°F	10	9	8	7	6	5	4	3	2	1	0	°F

GRADE: **IRON VS. COPPER-NICKEL**

TYPE "J" THERMOCOUPLE REFERENCE TABLES °F

N.I.S.T. Monograph 175 Revised to ITS-90

TEMPERATURE IN DEGREES °F	MAXIMUM TEMPERATURE GR	DE LIMITS OF ERROR
REFERENCE JUNCTION AT 32°F	32 to 1382°F 32 t 0 to 750°C 0 t	5 Sez F Standard. Special.
Thermoelectric °F 10 9 8 7 6	Voltage in Millivolts 5 4 3 2 1 0 °F	Thermoelectric Voltage in Millivolts °F 10 9 8 7 6 5 4 3 2 1 0 °F
1060 31.426 31.458 31.490 31.522 31.554 3 1070 31.746 31.778 31.811 31.843 31.875 3 1080 32.068 32.100 32.132 32.164 32.196 3		1660 52.154 52.189 52.224 52.258 52.293 52.327 52.362 52.396 52.431 52.465 52.500 1660 1670 52.500 52.534 52.569 52.603 52.638 52.672 52.707 52.714 52.776 52.810 52.844 1670 1680 52.844 52.879 52.913 52.947 52.920 53.016 53.050 53.085 53.119 53.153 53.188 1680
1100 32.713 32.746 32.778 32.810 32.843 3 1110 33.037 33.070 33.102 33.135 33.167 3 1120 33.363 33.395 33.428 33.460 33.493 3 1130 33.689 33.722 33.754 33.787 33.820 3	3.853 33.885 33.918 33.951 33.984 34.016 113	1710 53.871 53.905 53.939 53.973 54.007 54.041 54.075 54.109 54.143 54.177 54.211 1710 1720 54.211 54.245 54.279 54.313 54.347 54.381 54.415 54.449 54.483 54.516 54.550 1720 1730 54.550 54.584 54.618 54.652 54.686 54.719 54.753 54.821 54.855 54.888 1730
1150 34.345 34.378 34.411 34.444 34.476 3 1160 34.674 34.707 34.740 34.773 34.806 3 1170 35.005 35.038 35.071 35.104 35.138 3 1180 35.337 35.370 35.403 35.437 35.470 3	4.840 34.873 34.906 34.939 34.972 35.005 116 5.171 35.204 35.237 35.270 35.304 35.337 117 5.503 35.536 35.570 35.603 35.636 35.670 118	1750 55.225 55.259 55.223 55.326 55.330 55.427 55.461 55.494 55.528 55.561 1750 1760 55.561 55.595 55.628 55.662 55.695 55.729 55.762 55.796 55.829 55.863 55.986 1760 1770 55.896 55.903 55.997 56.030 56.063 56.097 56.130 56.14 56.197 56.230 1770 1780 56.230 56.247 56.303 56.364 56.397 56.430 56.444 56.497 56.530 56.564 1780
1200 36.004 36.037 36.071 36.104 36.138 3 1210 36.339 36.373 36.406 36.440 36.473 3 1220 36.675 36.709 36.743 36.777 36.810 3 1230 37.013 37.047 37.081 37.114 37.148 3		1800 56.896 56.929 56.929 56.925 57.028 57.062 57.095 57.128 57.161 57.194 57.227 1800 1810 57.227 57.260 57.293 57.326 57.393 57.426 57.495 57.492 57.525 57.558 1810 1820 57.558 57.51 57.624 57.657 57.690 57.23 57.756 57.892 57.825 57.888 1820 1830 57.888 57.920 57.533 57.986 58.019 58.052 58.085 58.118 58.151 58.184 58.217 1830
1250 37.692 37.726 37.760 37.794 37.828 3 1260 38.033 38.067 38.101 38.135 38.169 3 1270 38.375 38.409 38.444 38.478 38.512 3	7.862 37.896 37.930 37.964 37.999 38.033 125 8.204 38.238 38.272 38.306 38.341 38.375 126 8.546 38.581 38.615 38.650 38.684 38.718 127 8.890 38.925 38.959 38.994 39.028 39.063 128	1850 58.545 58.578 58.610 58.643 58.676 58.709 58.741 58.774 58.807 58.840 58.872 1850 1860 58.872 58.905 58.383 58.971 59.003 59.069 59.101 59.134 59.167 59.199 1860 1870 59.199 59.225 59.277 59.330 59.363 59.395 59.428 59.460 59.493 59.526 1870
1300 39.408 39.443 39.478 39.512 39.547 3 1310 39.755 39.790 39.825 39.859 39.884 3 1320 40.103 40.138 40.173 40.207 40.242 4 1330 40.452 40.487 40.522 40.556 40.591 4	9.582 39.616 39.651 39.686 39.720 39.755 130	1900 60.177 60.209 60.242 60.274 60.307 60.339 60.371 60.404 60.436 60.469 60.501 1900 1910 60.501 60.534 60.566 60.599 60.631 60.663 60.696 60.728 60.761 60.733 60.826 1910 1920 60.826 60.858 60.890 60.923 60.955 60.987 61.202 61.055 61.117 61.149 1920 1930 61.149 61.182 61.214 61.226 61.279 61.311 61.343 61.376 61.408 61.440 61.473 1930
1360 41.504 41.539 41.574 41.610 41.645 4 1370 41.856 41.892 41.927 41.962 41.998 4 1380 42.210 42.245 42.281 42.316 42.351 4		1960 62.118 62.151 62.183 62.215 62.247 62.280 62.312 62.344 62.376 62.409 62.441 1960 1970 62.441 62.473 62.557 62.570 62.602 62.634 62.666 62.699 62.731 62.763 1970 1980 62.763 62.795 62.827 62.802 62.924 62.956 62.988 63.020 63.053 63.085 1980
1410 43.274 43.310 43.346 43.381 43.417 4 1420 43.631 43.667 43.702 43.738 43.774 4 1430 43.988 44.024 44.060 44.096 44.131 4	3.096 43.132 43.167 43.203 43.239 43.274 140 3.452 43.484 43.524 43.59 43.631 141 3.809 43.845 43.824 43.917 43.953 43.988 142 4.167 44.203 44.239 44.275 44.310 44.346 143 4.525 44.561 44.597 44.633 44.669 44.705 144	2020 64.049 64.081 64.113 64.146 64.178 64.210 64.242 64.274 64.306 64.338 64.370 2020 2030 64.370 64.402 64.435 64.467 64.499 64.531 64.563 64.595 64.627 64.659 64.641 2030
1460 45.064 45.099 45.135 45.171 45.207 4 1470 45.423 45.458 45.494 45.530 45.566 4 1480 45.782 45.818 45.853 45.889 45.925 4	4.884 44.920 44.956 44.992 45.028 45.064 145 5.243 45.279 45.315 45.351 45.387 45.423 146 5.602 45.638 45.674 45.710 45.746 45.728 147 5.602 45.638 45.674 45.710 45.746 45.782 147 5.961 45.997 46.033 46.069 46.105 46.104 148 6.320 46.356 46.392 46.428 46.464 46.500 149	2060 65.333 65.365 65.397 65.429 65.461 65.493 65.525 65.557 65.590 65.622 65.654 2060 2070 65.654 65.686 65.718 65.750 65.782 65.814 65.846 65.878 65.910 65.942 65.974 2070 2080 65.974 66.006 66.038 66.070 66.122 66.134 66.166 66.199 66.231 66.263 66.295 2080
1510 46.858 46.894 46.930 46.966 47.001 4 1520 47.216 47.252 47.288 47.324 47.359 4 1530 47.574 47.610 47.646 47.681 47.717 4	6.679 46.715 46.751 46.786 46.822 46.858 150 7.037 47.019 47.145 47.181 47.216 151 7.395 47.431 47.467 47.503 47.534 47.541 151 7.753 47.788 47.867 47.804 47.894 47.391 153 8.110 48.145 48.181 48.217 48.252 48.288 154	2110 66.935 66.967 66.999 67.031 67.063 67.095 67.127 67.159 67.191 67.223 67.255 2110 2120 67.255 67.287 67.319 67.351 67.383 67.415 67.447 67.479 67.511 67.543 67.575 2120 2130 67.575 67.607 67.639 67.671 67.735 67.767 67.799 67.831 67.895 2130
1560 48.644 48.679 48.715 48.750 48.786 4		2160 68.534 68.566 68.597 68.629 68.661 68.693 68.725 68.757 68.789 68.821 68.853 2160 2170 68.853 68.844 68.916 68.980 69.012 69.044 69.076 69.108 69.139 69.171 2170 2180 69.171 69.235 69.267 69.299 69.330 69.362 69.394 69.426 69.458 69.490 2180
1610 50.411 50.446 50.481 50.517 50.552 5 1620 50.762 50.797 50.832 50.867 50.902 5 1630 51.112 51.147 51.181 51.216 51.251 5	0.235 50.271 50.306 50.341 50.376 50.411 160 0.587 50.622 50.667 50.682 50.727 50.762 161 0.937 50.972 51.007 51.042 51.077 51.112 162 1.286 51.321 51.391 51.425 51.460 163 1.634 51.669 51.704 51.378 51.773 51.808 164	
°F 10 9 8 7 6	5 4 3 2 1 0 °F	
	1	15

Type "K" Thermocouple Reference Tables °C N.I.S.T. Monograph 175 Revised to ITS-90

GRADE:

NICKEL-CHROMIUM

TECHN	DLOGIES, INC.			ΜΔΧΙ	мим т			GRADE	-	арпт	15 Kel					(\\/hicl	hever i	s Grea	ter)		VS.	NIC	(EL-/	ALUN	ЛINU	Μ
				couple	Grade		Exte	ension	Grade		2.2%	Sta	anda	ard:				Specia .1°C	d: É	4.07	TEM	PERAT	URE II	N DEG	REES °	C
			28 00	to 1	282°F 250°C		32 0	to to	392° 200°		2.2°C 2.2°C				6 Abov 6 Belov			.10	01 0.	4 70	REF	ERENO	ce jun	CTION	AT 0°	C
				Thermo	oelectri	c Voltaç	ge in M	illivolts										Thermo	oelectri	c Volta	ge in M	illivolts	5			
°C	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°C		°C 00	0 16.397	1	2	3	4	5	6 16.651	7	8	9	10	°C 400
													4	10	16.820	16.439 16.862		16.947	16.989	17.031	17.074	17.116	17.158	17.201	17.243	410
-260	-6.458	-6.457				-6.452		-6.448				-260	4	30	17.667	17.709	17.752	17.370 17.794	17.837	17.879	17.921	17.964	18.006	18.049	18.091	420 430
-250 -240	-6.441 -6.404	-6.438 -6.399	-6.435 -6.393	-6.432 -6.388	-6.429 -6.382	-6.425 -6.377	-6.421 -6.370	-6.417 -6.364	-6.413 -6.358	-6.408 -6.351	-6.404 -6.344	-250 -240		40 50		18.134 18.558		18.218		18.303 18.728	18.346 18.771	18.388 18.813		18.473 18.898	18.516 18.941	440 450
-230 -220	-6.344 -6.262	-6.337 -6.252	-6.329 -6.243		-6.314 -6.223	-6.306 -6.213	-6.297 -6.202	-6.289 -6.192	-6.280 -6.181	-6.271 -6.170		-230 -220	4	60 70	18.941			19.068	19.111	19.154	19.196 19.622	19.239	19.281	19.324		460 470
-210	-6.158	-6.147	-6.135	-6.123	-6.111	-6.099	-6.087	-6.074	-6.061	-6.048	-6.035	-210	4	80	19.792	19.835	19.877	19.920	19.962	20.005	20.048	20.090	20.133	20.175	20.218	480
-200 -190	-6.035 -5.891	-6.021 -5.876	-6.007 -5.861		-5.980 -5.829		-5.951 -5.797		-5.922 -5.763	-5.907 -5.747		-200 -190		90 600				20.346 20.772								490 500
-180 -170	-5.730 -5.550	-5.713	-5.695 -5.512	-5.678	-5.660 -5.474		-5.624 -5.435	-5.606	-5.588 -5.395	-5.569 -5.374		-180 -170			21.071	21.113	21.156		21.241	21.284	21.326	21.369	21.412	21.454	21.497	510 520
-160 -150	-5.354 -5.141	-5.333 -5.119	-5.313	-5.292	-5.271	-5.250 -5.029	-5.228 -5.006	-5.207	-5.185 -4.960	-5.163 -4.936	-5.141	-160 -150	5	30	21.924	21.966	22.009	22.052 22.478	22.094	22.137	22.179	22.222	22.265	22.307	22.350	530 540
-140	-4.913	-4.889	-4.865	-4.841	-4.817	-4.793	-4.768	-4.744	-4.719	-4.694	-4.669	-140	-	50	22.776	22.819	22.862	22.904	22.947	22.990	23.032	23.075	23.117	23.160	23.203	550
-130 -120	-4.669 -4.411	-4.644 -4.384	-4.618 -4.357		-4.567 -4.303		-4.516 -4.249		-4.463 -4.194	-4.437 -4.166		-130 -120	-					23.331 23.757							23.629 24.055	560 570
-110 -100	-4.138 -3.852	-4.110 -3.823	-4.082 -3.794		-4.025 -3.734	-3.997 -3.705	-3.968 -3.675	-3.939 -3.645	-3.911 -3.614	-3.882 -3.584		-110 -100						24.182 24.608								580 590
-90	-3.554	-3.523	-3.492	-3.462	-3.431	-3.400	-3.368	-3.337	-3.306	-3.274	-3.243	-90	6	600	24.905	24.948	24.990	25.033	25.075	25.118	25.160	25.203	25.245	25.288	25.330	600
-80 -70	-3.243 -2.920	-3.211 -2.887	-2.854	-2.821	-3.115 -2.788	-3.083 -2.755	-3.050 -2.721		-2.986 -2.654	-2.953 -2.620	-2.920 -2.587	-80 -70	6	520	25.755	25.797	25.840	25.458 25.882	25.924	25.967	26.009	26.052		26.136	26.179	610 620
-60 -50	-2.587 -2.243	-2.553 -2.208	-2.519 -2.173		-2.450 -2.103	-2.416 -2.067	-2.382 -2.032	-2.347 -1.996	-2.312 -1.961	-2.278 -1.925	-2.243 -1.889	-60 -50						26.306 26.729								630 640
-40 -30	-1.889 -1.527	-1.854 -1.490	-1.818 -1.453	-1.782 -1.417	-1.745 -1 380		-1.673 -1.305		-1.600 -1.231	-1.564 -1.194	-1.527 -1.156	-40 -30			27.025			27.152 27.574			27.278 27.700	27.320 27.742		27.405 27.826	27.447 27.869	650 660
-20 -10	-1.156 -0.778	-1.119 -0.739		-1.043		-0.968 -0.586	-0.930 -0.547	-0.892	-0.854	-0.816 -0.431	-0.778 -0.392	-20 -10	6	570	27.869	27.911	27.953	27.995 28.416	28.037	28.079	28.121	28.163	28.205	28.247	28.289	670 680
0	-0.392	-0.353	-0.314		-0.236	-0.197	-0.157	-0.118	-0.079	-0.039	0.000	0						28.835						29.087		690
0 10	0.000 0.397	0.039 0.437	0.079 0.477	0.119 0.517	0.158 0.557	0.198 0.597	0.238 0.637	0.277 0.677	0.317 0.718	0.357 0.758	0.397 0.798	0 10		/00 /10				29.255 29.673			29.380 29.798	29.422 29.840		29.506 29.924	29.548 29.965	700 710
20 30	0.798 1.203	0.838 1.244	0.879 1.285	0.919 1.326	0.960 1.366	1.000 1.407	1.041 1.448	1.081 1.489	1.122 1.530	1.163 1.571	1.203 1.612	20 30		20 30			30.049 30.466			30.174 30.590	30.216 30.632	30.257 30.674		30.341 30.757	30.382 30.798	720 730
40	1.612	1.653	1.694	1.735	1.776	1.817	1.858	1.899	1.941	1.982	2.023	40			30.798	30.840	30.881	30.923	30.964	31.006	31.047	31.089	31.130			740
50 60	2.023 2.436	2.064 2.478	2.106 2.519	2.147 2.561	2.188 2.602	2.230 2.644	2.271 2.685	2.312 2.727	2.354 2.768	2.395 2.810	2.436 2.851	50 60	7		31.628	31.669		31.752	31.793	31.834		31.917	31.958	32.000	31.628 32.041	750 760
70 80	2.851 3.267	2.893 3.308	2.934 3.350	2.976 3.391	3.017 3.433	3.059 3.474	3.100 3.516	3.142 3.557	3.184 3.599	3.225 3.640	3.267 3.682	70 80					32.124 32.536	32.165 32.577			32.289 32.700		32.371 32.783	32.412 32.824		770 780
90 100	3.682 4.096	3.723 4.138	3.765 4.179	3.806 4.220	3.848 4.262	3.889 4.303	3.931 4.344	3.972 4.385	4.013 4.427	4.055 4.468	4.096 4.509	90 100		90 800			32.947 33.357	32.988		33.070 33.480	33.111 33.521	33.152 33.562			33.275 33.685	790 800
110	4.509	4.550	4.591	4.633	4.674 5.084	4.715	4.756	4.797	4.838	4.879 5.288	4.920 5.328	110 110 120	8	310	33.685	33.726	33.767	33.808	33.848	33.889 34.297	33.930	33.971	34.012	34.053	34.093	810 820
120 130	4.920 5.328	4.961 5.369	5.002 5.410	5.450	5.491	5.124 5.532	5.165 5.572	5.206 5.613	5.653	5.694	5.735	130	8	30		34.542	34.582	34.623	34.664	34.704	34.338 34.745	34.786	34.826	34.460 34.867	34.908	830
140 150	5.735 6.138	5.775 6.179	5.815 6.219	5.856 6.259	5.896 6.299	5.937 6.339	5.977 6.380	6.017 6.420	6.058 6.460	6.098 6.500	6.138 6.540	140 150						35.029 35.435								840 850
160 170	6.540 6.941	6.580 6.981	6.620 7.021	6.660	6.701 7.100	6.741 7.140	6.781 7.180	6.821 7.220	6.861 7.260	6.901 7.300	6.941 7.340	160 170		860	35.718	35.758	35.798	35.839 36.242	35.879	35.920	35.960	36.000	36.041	36.081	36.121	860 870
180 190	7.340 7.739	7.380	7.420 7.819		7.500 7.899	7.540 7.939	7.579	7.619 8.019	7.659	7.699 8.099	7.739 8.138	180 190	8	80	36.524	36.564	36.604	36.644 37.046	36.685	36.725	36.765	36.805	36.845	36.885	36.925	880 890
200	8.138	8.178	8.218	8.258	8.298	8.338	8.378	8.418	8.458	8.499	8.539	200	9	00	37.326	37.366	37.406	37.446	37.486	37.526	37.566	37.606	37.646	37.686	37.725	900
210 220	8.539 8.940	8.579 8.980	8.619 9.020	8.659 9.061	8.699 9.101	8.739 9.141	8.779 9.181	8.819 9.222	8.860 9.262	8.900 9.302	8.940 9.343	210 220	92	20	38.124	38.164	38.204	37.845 38.243	38.283	38.323	38.363	38.402	38.442	38.482	38.522	910 920
230 240	9.343 9.747	9.383 9.788	9.423 9.828	9.464 9.869	9.504 9.909	9.545 9.950	9.585 9.991	9.626 10.031	9.666 10.072	9.707 10.113	9.747 10.153	230 240						38.641 39.037								930 940
250	10.153	10.194	10.235	10.276	10.316	10.357	10.398	10.439	10.480	10.520	10.561	250		950	39.314	39.353	39.393	39.432	39.471	39.511	39.550	39.590	39.629	39.669	39.708	950
260 270	10.971	11.012	11.053	11.094	11.135	11.176	11.217	10.848 11.259	11.300	11.341	11.382	260 270	9	70	40.101	40.141	40.180	39.826 40.219	40.259	40.298	40.337	40.376	40.415	40.455	40.494	960 970
280 290								11.671 12.084				280 290	-					40.611 41.002								980 990
300 310								12.499 12.915				300 310						41.393 41.781								
320 330	13.040	13.081	13.123	13.165	13.206	13.248	13.290	13.331 13.749	13.373	13.415	13.457	320 330	10)20	42.053	42.092	42.131	42.169 42.556	42.208	42.247	42.286	42.324	42.363	42.402	42.440	1020
340	13.874	13.916	13.958	14.000	14.042	14.084	14.126	14.167	14.209	14.251	14.293	340	104	40	42.826	42.865	42.903	42.942	42.980	43.019	43.057	43.096	43.134	43.173	43.211	1040
350 360	14.713	14.755	14.797	14.839	14.881	14.923	14.965	14.587 15.007	15.049	15.091	15.133	350 360						43.327 43.710								
370 380	15.133	15.175	15.217	15.259	15.301	15.343	15.385	15.427 15.849	15.469	15.511	15.554	370 380		070	43.978	44.016	44.054	44.092 44.473	44.130	44.169	44.207	44.245	44.283	44.321	44.359	1070
390	15.975	16.017	16.059	16.102	16.144	16.186	16.228	16.270	16.313	16.355	16.397	390	109	90	44.740	44.778	44.816	44.853	44.891	44.929	44.967	45.005	45.043	45.081	45.119	1090
°C	0	1	2	3	4	5	6	7	8	9	10	°C		°C	0	1	2	3	4	5	6	7	8	9	10	°C

GRADE: NICKEL-CHROMIUM

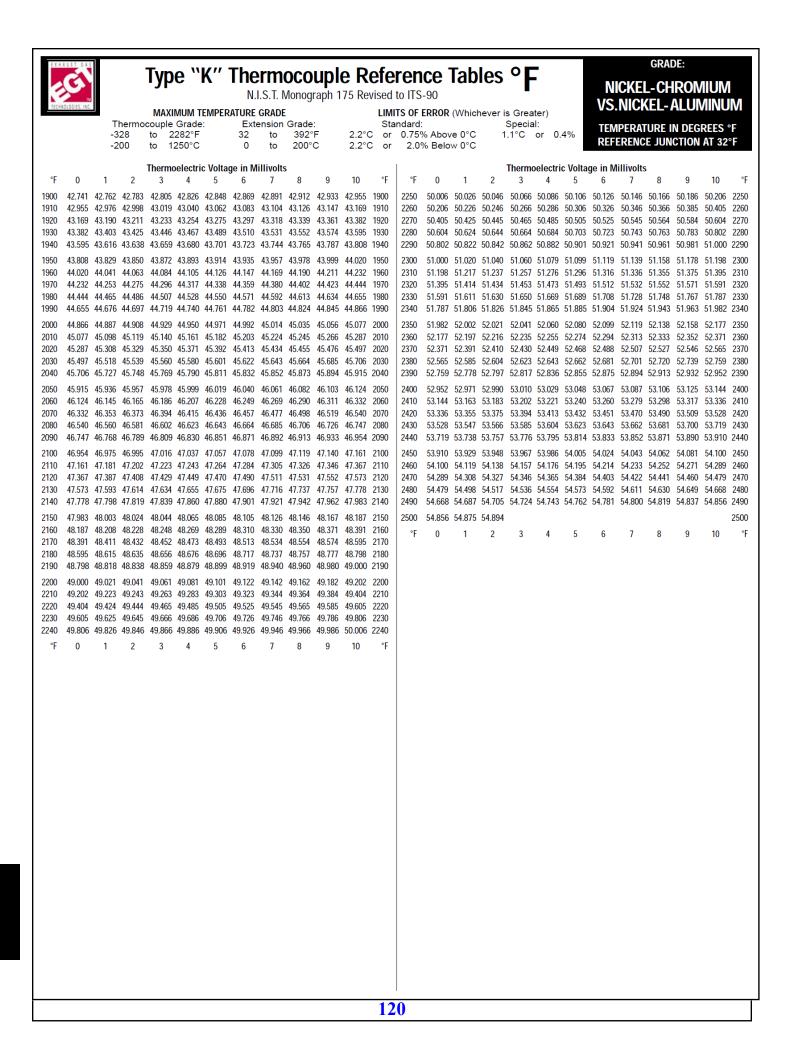
Type "K" Thermocouple Reference Tables °C

VS.NICKEL-ALUMINUM		N.I.S.T. Mo	nograph 175 Revised to ITS-90
The	MAXIMUM TEMPER		LIMITS OF ERROR (Whichever is Greater)
DEFEDENCE UNICTION AT 0°C -328	nocouple Grade: to 2282°F		392°F 2.2°C or 0.75% Above 0°C 1.1°C or 0.4%
REFERENCE JUNCTION AT 0°C -200	to 1250°C	0 to 2	200°C 2.2°C or 2.0% Below 0°C
Thermoelectric Voltage i			Thermoelectric Voltage in Millivolts
°C 0 1 2 3 4 5 1100 45.119 45.157 45.194 45.232 45.270 45.308 45.	5 7 8 9 346 45 383 45 421 45 450	10 °C	°C 0 1 2 3 4 5 6 7 8 9 10 °C 1250 50.644 50.680 50.715 50.751 50.787 50.822 50.858 50.894 50.929 50.965 51.000 1250
1110 45.497 45.534 45.572 45.610 45.647 45.685 45.	723 45.760 45.798 45.836	6 45.873 1110 1	1260 51.000 51.036 51.071 51.107 51.142 51.178 51.213 51.249 51.284 51.320 51.355 1260
1120 45.873 45.911 45.948 45.986 46.024 46.061 46. 1130 46.249 46.286 46.324 46.361 46.398 46.436 46.			1270 51.355 51.391 51.426 51.461 51.497 51.532 51.567 51.603 51.638 51.673 51.708 1270 1280 51.708 51.744 51.779 51.814 51.885 51.920 51.955 51.990 52.025 52.060 1280
1140 46.623 46.660 46.697 46.735 46.772 46.809 46.			1290 52.060 52.095 52.130 52.165 52.200 52.235 52.270 52.305 52.340 52.375 52.410 1290
1150 46.995 47.033 47.070 47.107 47.144 47.181 47. 1160 47.367 47.404 47.441 47.478 47.515 47.552 47.	589 47.626 47.663 47.700	47.737 1160 1	1300 52.410 52.445 52.480 52.515 52.550 52.585 52.620 52.654 52.689 52.724 52.759 1300 1310 52.759 52.794 52.828 52.863 52.932 52.967 53.002 53.037 53.071 53.106 1310
1170 47.737 47.774 47.811 47.848 47.884 47.921 47. 1180 48.105 48.142 48.179 48.216 48.252 48.289 48.			1320 53.106 53.140 53.175 53.210 53.214 53.279 53.313 53.348 53.382 53.417 53.451 1320 1330 53.451 53.466 53.520 53.555 53.589 53.653 53.658 53.692 53.727 53.761 53.795 1330
1190 48.473 48.509 48.546 48.582 48.619 48.656 48.	692 48.729 48.765 48.802	2 48.838 1190 1	1340 53.795 53.830 53.864 53.898 53.932 53.967 54.001 54.035 54.069 54.104 54.138 1340
1200 48.838 48.875 48.911 48.948 48.984 49.021 49. 1210 49.202 49.239 49.275 49.311 49.348 49.384 49.	420 49.456 49.493 49.529	49.565 1210 1	1350 54.138 54.172 54.206 54.240 54.274 54.308 54.343 54.377 54.411 54.445 54.479 1350 1360 54.479 54.513 54.547 54.581 54.615 54.649 54.683 54.717 54.751 54.785 54.819 1360
1220 49.565 49.601 49.637 49.674 49.710 49.746 49. 1230 49.926 49.962 49.998 50.034 50.070 50.106 50.			1370 54.819 54.852 54.886 1370
1240 50.286 50.322 50.358 50.393 50.429 50.465 50.	501 50.537 50.572 50.608	3 50.644 1240	
°C 0 1 2 3 4 5	6 7 8 9	10 °C	°C 0 1 2 3 4 5 6 7 8 9 10 °C
		1	
		117	

Type "K" Thermocouple Reference Tables °F N.I.S.T. Monograph 175 Revised to ITS-90

GRADE:

NICKEL-CHROMIUM


TECHN	INC.			MAVI	NALINA T			1.5.1. 1\ CDADE		apn 1	75 KG				(\ \ /bic	hever :	e Gree	tor)		VS.	NIC	(EL-/	ALUN	ЛINU	Μ
				couple	Grade		Exte	GRADE ension	Grade			Sta	ndard				Specia	d: É	10/					REES °	
			28 00		282°F 250°C		32 0	to to	392° 200°		2.2°C 2.2°C			% Abo\ % Belo		1	.1°C	or 0.	4%					AT 32	
				Thermo	oelectri	c Volta	ae in M	illivolts					I				Thermo	pelectri	c Volta	qe in M	illivolts				
°F	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°F	۴	0	1	2	3	4	5	6	7	8	9	10	°F
													100	1.521	1.543	1.566	1.589	1.612	1.635	1.657	1.680	1.703	1.726	1.749	100
													110 120	1.749 1.977	1.771 2.000	1.794 2.023	1.817 2.046	1.840 2.069	1.863 2.092	1.886 2.115	1.909 2.138	1.931 2.161	1.954 2.184	1.977 2.207	110 120
450							-6.458	6 467	6 457	6 466	-6.456	450	130	2.207 2.436	2.230	2.253	2.276	2.298	2.321	2.344	2.367 2.598	2.390	2.413	2.436	130 140
-450 -440	-6.456	-6.455	-6.454	-6.454	-6.453	-6.452	-6.458	-6.457 -6.450	-6.457 -6.449	-6.456 -6.448	-6.436	-450 -440	140 150	2.430	2.459 2.690	2.483 2.713	2.506 2.736	2.529 2.759	2.552 2.782	2.575 2.805	2.598	2.621 2.851	2.644 2.874	2.667 2.897	140 150
-430	-6.446	-6.445	-6.444	-6.443	-6.441	-6.440	-6.438	-6.436	-6.435	-6.433	-6.431	-430	160	2.897	2.920	2.944	2.967	2.990	3.013	3.036	3.059	3.082	3.105	3.128	160
-420 -410	-6.431 -6.409	-6.429 -6.406	-6.427 -6.404	-6.425 -6.401	-6.423 -6.398	-6.421 -6.395	-6.419 -6.392	-6.416 -6.389	-6.414 -6.386	-6.411 -6.383	-6.409 -6.380	-420 -410	170 180	3.128 3.359	3.151 3.382	3.174 3.405	3.197 3.428	3.220 3.451	3.244 3.474	3.267 3.497	3.290 3.520	3.313 3.544	3.336 3.567	3.359 3.590	170 180
-400	-6.380	-6.377	-6.373	-6.370	-6.366	-6.363	-6.359	-6.355	-6.352	-6.348	-6.344	-400	190	3.590	3.613	3.636	3.659	3.682	3.705	3.728	3.751	3.774	3.797	3.820	190
-390	-6.344	-6.340	-6.336	-6.332	-6.328	-6.323	-6.319	-6.315	-6.310	-6.306	-6.301	-390	200	3.820	3.843	3.866	3.889	3.912	3.935	3.958	3.981	4.004	4.027	4.050	200
-380 -370	-6.301 -6.251	-6.296 -6.246	-6.292 -6.241	-6.287 -6.235	-6.282 -6.230	-6.277 -6.224	-6.272 -6.218	-6.267 -6.213	-6.262 -6.207	-6.257 -6.201	-6.251 -6.195	-380 -370	210 220	4.050 4.280	4.073 4.303	4.096 4.326	4.119 4.349	4.142 4.372	4.165 4.395	4.188 4.417	4.211 4.440	4.234 4.463	4.257 4.486	4.280 4.509	210 220
-360	-6.195	-6.189	-6.183	-6.177	-6.171	-6.165	-6.158	-6.152	-6.146	-6.139	-6.133	-360	230	4.509	4.532	4.555	4.578	4.601	4.623	4.646	4.669	4.692	4.715	4.738	230
-350 -340	-6.133 -6.064	-6.126 -6.057	-6.119 -6.049	-6.113 -6.042	-6.106 -6.035	-6.099 -6.027	-6.092 -6.020	-6.085 -6.012	-6.078 -6.004	-6.071 -5.997	-6.064 -5.989	-350 -340	240 250	4.738 4.965	4.760 4.988	4.783 5.011	4.806 5.034	4.829 5.056	4.852 5.079	4.874 5.102	4.897 5.124	4.920 5.147	4.943 5.170	4.965 5.192	240 250
-330	-5.989	-5.981	-5.973	-5.965	-5.957	-5.949	-5.941	-5.933	-5.925	-5.917	-5.908	-330	260	5.192	5.215	5.238	5.260	5.283	5.306	5.328	5.351	5.374	5.396	5.419	260
-320 -310	-5.908 -5.822	-5.900 -5.813	-5.891 -5.804	-5.883 -5.795	-5.874 -5.786	-5.866 -5.776	-5.857 -5.767	-5.848 -5.758	-5.840 -5.749	-5.831 -5.739	-5.822 -5.730	-320 -310	270 280	5.419 5.644	5.441 5.667	5.464 5.690	5.487 5.712	5.509 5.735	5.532 5.757	5.554 5.779	5.577 5.802	5.599 5.824	5.622 5.847	5.644 5.869	270 280
-300	-5.730	-5.720	-5.711	-5.701	-5.691	-5.682	-5.672	-5.662	-5.652	-5.642	-5.632	-300	290	5.869	5.892	5.914	5.937	5.959	5.982	6.004	6.026	6.049	6.071	6.094	290
-290	-5.632	-5.622	-5.612	-5.602	-5.592	-5.581	-5.571	-5.561	-5.550	-5.540	-5.529	-290	300	6.094	6.116	6.138	6.161	6.183	6.205	6.228	6.250	6.272	6.295	6.317	300
-280 -270	-5.529 -5.421	-5.519 -5.410	-5.508 -5.399	-5.497 -5.388	-5.487 -5.377	-5.476 -5.365	-5.465 -5.354	-5.454 -5.343	-5.443 -5.331	-5.432 -5.320	-5.421 -5.308	-280 -270	310 320	6.317 6.540	6.339 6.562	6.362 6.585	6.384 6.607	6.406 6.629	6.429 6.652	6.451 6.674	6.473 6.696	6.496 6.718	6.518 6.741	6.540 6.763	310 320
-260	-5.308	-5.296	-5.285	-5.273	-5.261	-5.250	-5.238	-5.226	-5.214	-5.202	-5.190	-260	330	6.763	6.785	6.807	6.829	6.852	6.874	6.896	6.918	6.941	6.963	6.985	330
-250 -240	-5.190 -5.067	-5.178 -5.054	-5.166 -5.042	-5.153 -5.029	-5.141 -5.016	-5.129 -5.003	-5.117 -4.991	-5.104 -4.978	-5.092 -4.965	-5.079 -4.952	-5.067 -4.939	-250 -240	340 350	6.985 7.207	7.007 7.229	7.029 7.251	7.052 7.273	7.074 7.296	7.096 7.318	7.118 7.340	7.140 7.362	7.163 7.384	7.185 7.407	7.207 7.429	340 350
-240	-4.939	-4.926	-3.042 -4.913	-4.900	-4.886	-3.003 -4.873	-4.860	-4.978 -4.847	-4.833	-4.820	-4.939	-230	360	7.429	7.451	7.473	7.495	7.517	7.540	7.562	7.584	7.606	7.628	7.650	360
-220 -210	-4.806 -4.669	-4.793 -4.655	-4.779 -4.641	-4.766 -4.627	-4.752 -4.613	-4.738 -4.599	-4.724 -4.584	-4.711 -4.570	-4.697 -4.556	-4.683 -4.542	-4.669 -4.527	-220 -210	370 380	7.650 7.872	7.673 7.894	7.695 7.917	7.717 7.939	7.739 7.961	7.761 7.983	7.783 8.005	7.806 8.027	7.828 8.050	7.850 8.072	7.872 8.094	370 380
-200	-4.527	-4.513					-4.440	-4.425		-4.396	-4.327	-200	390	8.094	8.116	8.138	8.161	8.183	8.205	8.227	8.250	8.272	8.294	8.316	390
-190	-4.381	-4.366	-4.351	-4.336	-4.321	-4.306	-4.291		-4.261	-4.246	-4.231	-190	400	8.316	8.338	8.361	8.383	8.405	8.427	8.450	8.472	8.494	8.516	8.539	400
-180 -170	-4.231 -4.076	-4.215 -4.060	-4.200 -4.044	-4.185 -4.029	-4.169 -4.013	-4.154 -3.997	-4.138 -3.981	-4.123 -3.965	-4.107 -3.949	-4.091 -3.933	-4.076 -3.917	-180 -170	410	8.539 8.761	8.561 8.784	8.583 8.806	8.605 8.828	8.628 8.851	8.650 8.873	8.672 8.895	8.694 8.918	8.717 8.940	8.739 8.962	8.761 8.985	410 420
-160	-3.917	-3.901	-3.885	-3.869	-3.852	-3.836	-3.820	-3.803	-3.787	-3.771	-3.754	-160	430	8.985	9.007	9.029	9.052	9.074	9.096	9.119	9.141	9.163	9.186	9.208	430
-150 -140	-3.754 -3.587	-3.738 -3.571	-3.721 -3.554	-3.705 -3.537	-3.688 -3.520	-3.671 -3.503	-3.655 -3.486	-3.638 -3.468	-3.621 -3.451	-3.604 -3.434	-3.587 -3.417	-150 -140	440	9.208 9.432	9.231 9.455	9.253 9.477	9.275 9.500	9.298 9.522	9.320 9.545	9.343 9.567	9.365 9.590	9.388 9.612	9.410 9.635	9.432 9.657	440 450
-140	-3.417	-3.400	-3.382	-3.365	-3.348	-3.330	-3.400	-3.408	-3.451	-3.434	-3.243	-140	450	9.432 9.657	9.433 9.680	9.702	9.300 9.725	9.747	9.770	9.792	9.815	9.837	9.860 9.860	9.882	450 460
-120 -110	-3.243 -3.065	-3.225 -3.047	-3.207	-3.190	-3.172 -2.993	-3.154	-3.136 -2.957	-3.119 -2.938	-3.101 -2.920	-3.083 -2.902	-3.065 -2.884	-120 -110	470 480	9.882 10.108	9.905 10.131	9.927 10.153	9.950	9.973 10.199	9.995 10.221	10.018 10.244	10.040 10.267	10.063 10.289	10.086 10.312	10.108 10.334	470 480
-100	-2.884							-2.755		-2.718	-2.699	-100	490							10.471					490
-90								-2.568				-90	500							10.698					500
-80 -70								-2.378 -2.185			-2.320 -2.126	-80 -70	510 520							10.925 11.154					510 520
-60	-2.126	-2.106	-2.087	-2.067	-2.048	-2.028	-2.008	-1.988	-1.969	-1.949	-1.929	-60	530	11.245	11.268	11.291	11.313	11.336	11.359	11.382	11.405	11.428	11.451	11.474	530
-50 -40								-1.790 -1.588				-50 -40	540 550							11.611 11.841					540 550
-30	-1.527	-1.507	-1.486	-1.466	-1.445	-1.425	-1.404	-1.384	-1.363	-1.343	-1.322	-40	560	11.933	11.956	11.978	12.001	12.024	12.047	12.070	12.093	12.116	12.140	12.163	560
-20 -10					-1.239 -1.031			-1.177 -0.968			-1.114 -0.905	-20 -10	570 580							12.301 12.531					570 580
-10								-0.968		-0.920		0	590							12.551					590
0		-0.671			-0.607			-0.543		-0.500	-0.478	0	600							12.993					600
10 20	-0.478 -0.262	-0.457 -0.240			-0.392 -0.175		-0.349 -0.131	-0.327 -0.109	-0.305 -0.088	-0.284 -0.066	-0.262 -0.044	10 20	610 620							13.225 13.457					610 620
30	-0.044	-0.022	0.000	0.022	0.044	0.066	0.088	0.110	0.132	0.154	0.176	30	630							13.689					630
40 50	0.176 0.397	0.198 0.419	0.220 0.441		0.264 0.486	0.286 0.508	0.308 0.530	0.330 0.552	0.353 0.575	0.375 0.597	0.397 0.619	40 50	640 650							13.921 14.154					640 650
50 60	0.397	0.419	0.441 0.664	0.463	0.486	0.508	0.530	0.552	0.575	0.897	0.843	50 60	660							14.154 14.386					660
70 80	0.843 1.068	0.865 1.090	0.888 1.113		0.933 1.158	0.955 1.181	0.978 1.203	1.000 1.226	1.023 1.249	1.045 1.271	1.068 1.294	70 80	670 680							14.619 14.853					670 680
80 90	1.294	1.316	1.339			1.181	1.203	1.453	1.249	1.498	1.521	80 90	690											14.946 15.179	
°F	0	1	2	3	4	5	6	7	8	9	10	°F	۴	0	1	2	3	4	5	6	7	8	9	10	°F
												11	8												
													-												

GRADE: NICKEL-CHROMIUM

Type "K" Thermocouple Reference Tables °F N.I.S.T. Monograph 175 Revised to ITS-90

V	S.NI	CKE	-AL	UMI	NUM			NAA 1 /1						raph 1	75 Re		to IIS-		(A /L.···		0	(a.u.)		ECHNOLOGIES	TM 5. INC.
			E IN D				hermo		MUM TI Grade				Grade	:			TS OF E Indard:	KKOK	(Which	:	Specia	l: É			
			UNCTI				28 00		282°F 250°C		32 0	to to	392° 200°		2.2° 2.2°		0.75% 2.0%	6 Abov 6 Belo		1	.1°C	or 0.4	4%		
	noelect	ric Volt	age in l	Millivol	ts												Thermo	electri		•	illivolts				
°F	0	1	2	3	4	5	6	7	8	9	10	°F	°F	0	1	2	3	4	5	6	7	8	9	10	°F
700 710			15.226 15.460		15.273 15.507		15.320 15.554		15.366 15.600		15.413 15.647	700 710	1300 1310	29.315 29.548	29.338 29.571	29.362 29.594	29.385 29.617			29.455 29.687	29.478 29.710	29.501 29.733	29.524 29.757	29.548 29.780	1300 1310
720			15.694		15.741		15.788		15.834	15.858	15.881	720	1320	29.780	29.803	29.826				29.919	29.942		29.989	30.012	1320
730					15.975		16.022		16.069 16.303	16.092		730 740	1330 1340		30.035	30.058	30.081 30.313			30.151			30.220 30.452		1330 1340
740 750	16.350		16.397		16.444		16.491		16.538	16.561	16.585	740	1340	30.475		30.230			30.590	30.613	30.637	30.660		30.475	1340
760	16.585		16.632		16.679					16.796	16.820	760	1360	30.706			30.775					30.891	30.914		1360
770	16.820		16.867		16.914		16.961		17.008 17.243		17.055	770 780	1370	30.937	30.960		31.006						31.144		1370
780 790									17.243			790	1380 1390				31.236 31.467								1380 1390
800	17.526	17.549	17.573	17.596	17.620	17.643	17.667	17.690	17.714	17.738	17.761	800	1400	31.628	31.651	31.674	31.697	31.720	31.743	31.766	31.789	31.812	31.834	31.857	1400
810			17.808						17.950			810 820	1410				31.926						32.064		1410 1420
820 830	17.997 18.233		18.044 18.280		18.091 18.327					18.209 18.445	18.233 18.469	820 830	1420 1430	32.087			32.156 32.385						32.293 32.522		1420 1430
840	18.469	18.492	18.516	18.539	18.563	18.587	18.610	18.634	18.657	18.681	18.705	840	1440	32.545	32.568	32.591	32.614	32.636	32.659	32.682	32.705	32.728	32.751	32.774	1440
850	18.705		18.752		18.799		18.846	18.870		18.917	18.941	850	1450	32.774		32.819			32.888		32.933			33.002	1450
860 870	18.941 19.177		18.988 19.224		19.035 19.272		19.083 19.319		19.130 19.366	19.154 19.390	19.177 19.414	860 870	1460 1470	33.002	33.025 33.253	33.047				33.139 33.366			33.207 33.435		1460 1470
880			19.461		19.508				19.603	19.626	19.650	880	1480				33.526				33.617				1480
890					19.745 19.981				19.839			890 900	1490		33.708		33.753								
900 910	19.887 20.123		19.934 20.171						20.076 20.313		20.123 20.360	900 910	1500 1510				33.980 34.207						34.116 34.343		1500 1510
920	20.360		20.407						20.550			920	1520	34.365			34.433						34.569		1520
930 940	20.597 20.834		20.644 20.881						20.786 21.023		20.834 21.071	930 940	1530 1540	34.591 34.817			34.659 34.885								
950									21.260		21.308	950	1550	35.043						35.178	35.201		35.246		1550
960									21.497			960	1560	35.268			35.336				35.426		35.471		1560
970 980									21.734 21.971		21.781 22.018	970 980	1570 1580	35.493 35.718		35.538 35.763				35.628 35.852		35.673 35.897	35.695 35.920		1570 1580
990	22.018	22.042							22.208		22.255	990	1590	35.942	35.964	35.987	36.009						36.144	36.166	1590
1000			22.303						22.445			1000	1600	36.166							36.323		36.367		1600
1010 1020			22.540 22.776						22.682 22.919			1010 1020	1610 1620	36.390 36.613			36.457 36.680		36.501 36.725	36.524 36.747		36.568 36.792	36.591 36.814		1610 1620
1030				23.037	23.061	23.084	23.108	23.132	23.155	23.179	23.203	1030	1630	36.836	36.859	36.881	36.903	36.925	36.948	36.970			37.037		1630
1040									23.392				1640				37.126								1640
1050 1060			23.487 23.723						23.629 23.865			1050 1060	1650 1660	37.281 37.504			37.348 37.570						37.481 37.703		1650 1660
1070			23.960						24.102			1070	1670	37.725			37.792						37.925		1670
1080 1090									24.338 24.575			1080 1090	1680 1690				38.013 38.235								
									24.811				1700				38.455								
									25.047				1710				38.676								
1120 1130									25.283 25.519				1720				38.896 39.116								
									25.755				1740				39.335								
1150									25.990				1750				39.555								
1160 1170									26.226 26.461				1760				39.774 39.992								
1180									26.696				1780				40.211								
									26.931				1790				40.429								
									27.166 27.400				1800 1810				40.646 40.864								
1220	27.447	27.471	27.494	27.517	27.541	27.564	27.588	27.611	27.635	27.658	27.681	1220	1820	41.015	41.037	41.059	41.081	41.102	41.124	41.146	41.167	41.189	41.211	41.232	1820
									27.869 28.103				1830 1840				41.297 41.514								
1250									28.336				1850				41.730								
1260	28.383	28.406	28.430	28.453	28.476	28.500	28.523	28.546	28.570	28.593	28.616	1260	1860	41.881	41.902	41.924	41.945	41.967	41.988	42.010	42.032	42.053	42.075	42.096	1860
1270 1280									28.803 29.036				1870 1880				42.161 42.376								
1290									29.269				1890				42.591								
°F	0	1	2	3	4	5	6	7	8	9	10	°F	°F	0	1	2	3	4	5	6	7	8	9	10	°F

GRADE: PLATINUM-13%

Type "R" Thermocouple Reference Tables °C N.I.S.T. Monograph 175 Revised to ITS-90

Rŀ	IODI	UM \	/S. P	LATI	NUN	1		MAXI	мим т	EMPER	IN.I ATURE (тарп т	75 Ke	viseu	10115		s of Ef	ROB				TECHNOLOGIE	TM ES, INC.
Т	emper	RATUR	E IN D	EGREE	S °C		hermoo 32	couple					Grade			Sta	(V ndard:			Greate	r) Specia	1.			
R	REFERI	Ence J	UNCT	ion at	0°C		0		450°C		0	to	150°		1.5°(25%	0.6	S°C	or	0.1%			
				Thermo	oelectri	c Volta	ge in M	illivolts	6								Thermo	electri	c Volta	ge in M	lillivolts	6			
°C	-10	-9 0.222	-8	-7	-6 0.211	-5	-4	-3	-2	-1 0.102	0	°C	°C	-10 6 157	-9 6 160	-8 c 190	-7 6 102	-6 6 204	-5	-4	-3 6 229	-2	-1 6.262	0	°C
-40 -30	-0.226 -0.188	-0.223 -0.184	-0.219 -0.180	-0.175		-0.208 -0.167	-0.204 -0.163	-0.200 -0.158	-0.196 -0.154	-0.192 -0.150	-0.188 -0.145	-40 -30	650 660	6.157 6.273	6.169 6.285	6.180 6.297	6.192 6.308	6.204 6.320	6.215 6.332	6.227 6.343	6.238 6.355	6.250 6.367	6.262 6.378	6.273 6.390	650 660
-20 -10	-0.145 -0.100	-0.141 -0.095	-0.137 -0.091	-0.132 -0.086	-0.081	-0.123 -0.076	-0.119 -0.071	-0.114 -0.066	-0.109 -0.061	-0.105 -0.056	-0.100 -0.051	-20 -10	670 680	6.390 6.507	6.402 6.519	6.413 6.531	6.425 6.542	6.437 6.554	6.448 6.566	6.460 6.578	6.472 6.589	6.484 6.601	6.495 6.613	6.507 6.625	670 680
0 0	-0.051 0.000	-0.046 0.005	-0.041 0.011	-0.036 0.016	-0.031 0.021	-0.026 0.027	-0.021 0.032	-0.016 0.038	-0.011 0.043	-0.005 0.049	0.000 0.054	0 0	690 700	6.625 6.743	6.636 6.755	6.648 6.766	6.660 6.778	6.672 6.790	6.684 6.802	6.695 6.814	6.707 6.826	6.719 6.838	6.731 6.849	6.743 6.861	690 700
10 20	0.054	0.060	0.065	0.071 0.129	0.077	0.082	0.032 0.088 0.147	0.094 0.153	0.100 0.159	0.105	0.111 0.171	10 20	710 720	6.861 6.980	6.873 6.992	6.885 7.004	6.897 7.016	6.909 7.028	6.921 7.040	6.933 7.052	6.945 7.064	6.956 7.076	6.968 7.088	6.980 7.100	710 720
30	0.171	0.177	0.183	0.189	0.195	0.201	0.207	0.214	0.220	0.226	0.232	30	730 740	7.100	7.112	7.124	7.136	7.148	7.160	7.172	7.184	7.196	7.208	7.220	730 740
40 50	0.232 0.296	0.239 0.303	0.245 0.310	0.251 0.316	0.258 0.323	0.264 0.329	0.271 0.336	0.277 0.343	0.284 0.349	0.290 0.356	0.296 0.363	40 50	740	7.220 7.340	7.232 7.352	7.244 7.364	7.256 7.376	7.268 7.389	7.280 7.401	7.292 7.413	7.304 7.425	7.316 7.437	7.328 7.449	7.340 7.461	740
60 70	0.363 0.431	0.369 0.438	0.376 0.445	0.383 0.452	0.390 0.459	0.397 0.466	0.403 0.473	0.410 0.480	0.417 0.487	0.424 0.494	0.431 0.501	60 70	760 770	7.461 7.583	7.473 7.595	7.485 7.607	7.498 7.619	7.510 7.631	7.522 7.644	7.534 7.656	7.546 7.668	7.558 7.680	7.570 7.692	7.583 7.705	760 770
80 90	0.501 0.573	0.508 0.581	0.516 0.588	0.523 0.595	0.530 0.603	0.537 0.610	0.544 0.618	0.552 0.625	0.559 0.632	0.566 0.640	0.573 0.647	80 90	780 790	7.705 7.827	7.717 7.839	7.729 7.851	7.741 7.864	7.753 7.876	7.766 7.888	7.778 7.901	7.790 7.913	7.802 7.925	7.815 7.938	7.827 7.950	780 790
100	0.647	0.655	0.662	0.670	0.677	0.685	0.693	0.700	0.708	0.715	0.723	100	800	7.950	7.962	7.974	7.987	7.999	8.011	8.024	8.036	8.048	8.061	8.073	800
110 120	0.723	0.731	0.738	0.746	0.754	0.761 0.839	0.769 0.847	0.777	0.785	0.792	0.800 0.879	110 120	810 820	8.073 8.197	8.086 8.209	8.098 8.222	8.110 8.234	8.123 8.247	8.135 8.259	8.147 8.272	8.160 8.284	8.172 8.296	8.185 8.309	8.197 8.321	810 820
130 140	0.879 0.959	0.887 0.967	0.895 0.976	0.903 0.984	0.911 0.992	0.919 1.000	0.927 1.008	0.935 1.016	0.943 1.025	0.951 1.033	0.959 1.041	130 140	830 840	8.321 8.446	8.334 8.459	8.346 8.471	8.359 8.484	8.371 8.496	8.384 8.509	8.396 8.521	8.409 8.534	8.421 8.546	8.434 8.559	8.446 8.571	830 840
150 160	1.041 1.124	1.049 1.132	1.058 1.141	1.066 1.149	1.074 1.158	1.082 1.166	1.091 1.175	1.099 1.183	1.107 1.191	1.116 1.200	1.124 1.208	150 160	850 860	8.571 8.697	8.584 8.710	8.597 8.722	8.609 8.735	8.622 8.748	8.634 8.760	8.647 8.773	8.659 8.785	8.672 8.798	8.685 8.811	8.697 8.823	850 860
170 180	1.208 1.294	1.217 1.303	1.225 1.311	1.234 1.320	1.242 1.329	1.251 1.337	1.260 1.346	1.268 1.355	1.277 1.363	1.285 1.372	1.294 1.381	170 180	870 880	8.823 8.950	8.836 8.963	8.849 8.975	8.861 8.988	8.874 9.001	8.887 9.014	8.899 9.026	8.912 9.039	8.925 9.052	8.937 9.065	8.950 9.077	870 880
190	1.381	1.389	1.398	1.407	1.416	1.425	1.433	1.442	1.451	1.460	1.469	190	890	9.077	9.090	9.103	9.115	9.128	9.141	9.154	9.167	9.179	9.192	9.205	890
200 210	1.469 1.558	1.477 1.567	1.486 1.575	1.495 1.584	1.504 1.593	1.513 1.602	1.522 1.611	1.531 1.620	1.540 1.629	1.549 1.639	1.558 1.648	200 210	900 910	9.205 9.333	9.218 9.346	9.230 9.359	9.243 9.371	9.256 9.384	9.269 9.397	9.282 9.410	9.294 9.423	9.307 9.436	9.320 9.449	9.333 9.461	900 910
220 230	1.648 1.739	1.657 1.748	1.666 1.757	1.675 1.766	1.684 1.775	1.693 1.784	1.702 1.794	1.711 1.803	1.720 1.812	1.729 1.821	1.739 1.831	220 230	920 930	9.461 9.590	9.474 9.603	9.487 9.616	9.500 9.629	9.513 9.642	9.526 9.655	9.539 9.668	9.552 9.681	9.565 9.694	9.578 9.707	9.590 9.720	920 930
240 250	1.831 1.923	1.840 1.933	1.849 1.942	1.858 1.951	1.868 1.961	1.877 1.970	1.886 1.980	1.895 1.989	1.905 1.998	1.914 2.008	1.923 2.017	240 250	940 950	9.720 9.850	9.733 9.863	9.746 9.876	9.759 9.889	9.772 9.902	9.785 9.915	9.798 9.928	9.811 9.941	9.824 9.954	9.837 9.967	9.850 9.980	940 950
260 270	2.017	2.027	2.036	2.046	2.055	2.064 2.159	2.074 2.169	2.083 2.179	2.093 2.188	2.102 2.198	2.112 2.207	260 270	960 970	9.980 10.111	9.993 10.124	10.006 10.137	10.019	10.032 10.163	10.046 10.177	10.059 10.190	10.072 10.203		10.098 10.229	10.111 10.242	960 970
280 290	2.207 2.304	2.217 2.313	2.226 2.323	2.236 2.333	2.246 2.342	2.255 2.352	2.265 2.362	2.275 2.371	2.284 2.381	2.294 2.391	2.304 2.401	280 290	980 990	10.242 10.374	10.255	10.268 10.400	10.282	10.295	10.308	10.321		10.347	10.361 10.493	10.374	980 990
300	2.401	2.410	2.420	2.430	2.440	2.449	2.459	2.469	2.479	2.488	2.498	300	1000	10.506	10.519	10.532	10.546	10.559	10.572	10.585	10.599	10.612	10.625	10.638	1000
310 320	2.498 2.597	2.508 2.607	2.518 2.617	2.528 2.626	2.538 2.636	2.547 2.646	2.557 2.656	2.567 2.666	2.577 2.676	2.587 2.686	2.597 2.696	310 320	1010 1020	10.638 10.771	10.652 10.785	10.665 10.798	10.811		10.838	10.718 10.851	10.731 10.865	10.878		10.771 10.905	1010 1020
330 340	2.696 2.796	2.706 2.806	2.716 2.816	2.726 2.826	2.736 2.836	2.746 2.846	2.756 2.856	2.766 2.866	2.776 2.876	2.786 2.886	2.796 2.896	330 340	1030 1040	10.905 11.039		10.932 11.065					10.998 11.132	11.012 11.146			1030 1040
350 360	2.896 2.997	2.906 3.007	2.916 3.018	2.926 3.028	2.937 3.038	2.947 3.048	2.957 3.058	2.967 3.068	2.977 3.079	2.987 3.089	2.997 3.099	350 360	1050 1060				11.213 11.348				11.267 11.402	11.280 11.415	11.294 11.429		1050 1060
370 380	3.099 3.201	3.109 3.212	3.119 3.222	3.130 3.232	3.140 3.242	3.150 3.253	3.160 3.263	3.171 3.273	3.181 3.284	3.191 3.294	3.201 3.304	370 380	1070 1080	11.442	11.456	11.469	11.483 11.618	11.496	11.510	11.524	11.537	11.551		11.578	1070 1080
390	3.304	3.315	3.325	3.335	3.346	3.356	3.366	3.377	3.387	3.397	3.408	390	1090	11.714	11.727	11.741	11.754	11.768	11.782	11.795	11.809	11.822	11.836	11.850	1090
400 410	3.408 3.512	3.418 3.522	3.428 3.533	3.439 3.543	3.449 3.553	3.460 3.564	3.470 3.574	3.480 3.585	3.491 3.595	3.501 3.606	3.512 3.616	400 410	1100 1110	11.986	12.000	12.013	12.027	12.041	12.054	12.068	12.082	11.959 12.096	12.109	12.123	1110
420 430	3.616 3.721	3.627 3.732	3.637 3.742	3.648 3.753	3.658 3.764	3.669 3.774	3.679 3.785	3.690 3.795	3.700 3.806	3.711 3.816	3.721 3.827	420 430	1120 1130	12.260	12.274	12.288	12.301	12.315	12.329	12.342	12.356	12.233 12.370	12.384	12.397	1130
440 450	3.827 3.933	3.838 3.944	3.848 3.954		3.869 3.976	3.880 3.986	3.891 3.997	3.901 4.008	3.912 4.018	3.922 4.029	3.933 4.040	440 450	1140 1150									12.508 12.646			
460 470	4.040 4.147	4.050 4.158	4.061 4.168	4.072 4.179		4.093 4.201	4.104 4.211	4.000 4.115 4.222	4.125	4.136	4.147 4.255	460 470	1160 1170	12.673	12.687	12.701	12.715	12.729	12.742	12.756	12.770	12.784 12.922	12.798	12.812	1160
480 490	4.255	4.265 4.373	4.276 4.384	4.287	4.298 4.406	4.309 4.417	4.319 4.428	4.330	4.341 4.449	4.352	4.363 4.471	480 490	1180 1190	12.950	12.964	12.978	12.992	13.006	13.019	13.033	13.047	13.061 13.200	13.075	13.089	1180
500	4.471	4.482	4.493	4.504	4.515	4.526	4.537	4.548	4.558	4.569	4.580	500	1200	13.228	13.242	13.256	13.270	13.284	13.298	13.311	13.325	13.339	13.353	13.367	1200
510 520	4.580 4.690	4.591 4.701	4.602 4.712	4.613 4.723	4.624 4.734	4.635 4.745	4.646 4.756	4.657 4.767	4.668 4.778	4.679 4.789	4.690 4.800	510 520	1210 1220	13.507	13.521	13.535	13.549	13.563	13.577	13.590	13.604	13.479 13.618	13.632	13.646	1220
530 540	4.800 4.910	4.811 4.922	4.822 4.933	4.833 4.944	4.844 4.955	4.855 4.966	4.866 4.977	4.877 4.988	4.888 4.999	4.899 5.010	4.910 5.021	530 540	1230 1240									13.758 13.898			
550 560	5.021 5.133	5.033 5.144	5.044 5.155	5.055 5.166	5.066 5.178	5.077 5.189	5.088 5.200	5.099 5.211	5.111 5.222	5.122 5.234	5.133 5.245	550 560	1250 1260	13.926	13.940	13.954	13.968	13.982	13.996	14.010	14.024	14.038 14.179	14.052	14.066	1250
560 570 580	5.133 5.245 5.357	5.144 5.256 5.369	5.267	5.279	5.290	5.301	5.312	5.323	5.335	5.346	5.357	500 570 580	1270	14.207	14.221	14.235	14.249	14.263	14.277	14.291	14.305	14.319	14.333	14.347	1270
580 590	5.470	5.481	5.380 5.493	5.391 5.504	5.402 5.515	5.414 5.527	5.425 5.538	5.436 5.549	5.448 5.561	5.459 5.572		580 590	1280 1290									14.460 14.601			
600 610	5.583 5.697	5.595 5.709	5.606 5.720	5.618 5.731	5.629 5.743	5.640 5.754	5.652 5.766	5.663 5.777	5.674 5.789	5.686 5.800	5.697 5.812	600 610	1300 1310	14.770	14.784	14.798	14.812	14.826	14.840	14.854	14.868	14.741 14.882	14.896	14.911	1310
620 630	5.812 5.926	5.823 5.938	5.834 5.949	5.846 5.961	5.857 5.972	5.869 5.984	5.880 5.995	5.892 6.007	5.903 6.018	5.915 6.030	5.926 6.041	620 630	1320 1330									15.023 15.164			
640 °С	6.041	6.053	6.065	6.076	6.088	6.099	6.111	6.122	6.134	6.146	6.157	640 °С	1340 °C	15.193	15.207	15.221	15.235	15.249	15.263	15.277	15.291	15.306	15.320	15.334	
U	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	U		-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	U
												12	1												

Type "R" Thermocouple Reference Tables °C

GRADE:

£ΧΗ	AUST GAS		•	Tvn	е "	R″	The	rm	იიი	unl	e R	efe	eren	Ce .	Tah	les	٥٢					GRAL			
	9			יזרי	U I								to ITS		au	103	l	,				INU			
TECH	NOLOGIES, INC.			MAX	IMUM 1	EMPER			0						S OF EI	RROR				RHO	DIUN	A VS	. PL	TIN	JM
		Т	hermo 32	couple	Grade	e:			Grade 300°			51	\) andard	Vhiche			r) Specia	al.				URE II			
			0		450°C		0	to	150°		1.5°			.25%	0.	6°C	or	0.1%	6	REF	ERENC	e Jun	CTION	AT 0°	C
					pelectri							_								ge in M					
°C 1350	-10 15.334	-9 15.348	-8 15.362	-7 15.376	-6 15.390	-5 15.404	-4 15.419	-3 15.433	-2 15.447	-1 15.461	0 15.475	°C 1350	°C 1600	-10 18.849	-9 18.863	-8 18.877	-7 18.891	-6 18.904	-5 18.918	-4 18.932	-3 18.946	-2 18.960	-1 18.974	0 18.988	°C 1600
1360 1370	15.475	15.489	15.503	15.517	15.531 15.673	15.546	15.560	15.574		15.602	15.616	1360	1610 1620	18.988	19.002	19.015 19.154	19.029 19.168		19.057 19.195	19.071 19.209	19.085 19.223		19.112 19.250	19.126	1610
1380	15.758	15.772	15.786	15.800	15.814	15.828	15.842	15.856	15.871	15.885	15.899	1380	1630	19.264	19.278	19.292	19.306	19.319	19.333	19.347	19.361	19.375	19.388	19.402	1630
1390 1400			15.927 16.068		15.955 16.097				16.012 16.153		16.040 16.181		1640 1650				19.444 19.581		19.471 19.609	19.485 19.622			19.526 19.663		
1410 1420			16.210 16.351	16.224	16.238 16.379	16.252	16.266 16.407	16.280		16.309	16.323 16.464		1660 1670	19.677	19.691	19.705 19.841	19.718	19.732	19.746	19.759	19.773 19.910	19.787	19.800	19.814	1660
1430 1440	16.464	16.478	16.492	16.506	16.520 16.662	16.534	16.549	16.563	16.577	16.591	16.605	1430	1680 1690	19.951	19.964	19.978	19.992	20.005	20.019	20.032 20.168	20.046	20.060	20.073	20.087	1680
1450	16.746	16.760	16.774	16.789	16.803	16.817	16.831	16.845	16.859	16.873	16.887	1450	1700	20.222	20.235	20.249	20.262	20.275	20.289	20.302	20.181				
1460 1470	17.028	17.042	17.056	17.071	16.944 17.085	17.099	17.113	17.127	17.000 17.141	17.155	17.169	1470	1710 1720			20.382 20.515				20.436 20.567	20.449 20.581		20.475 20.607		
1480 1490					17.225 17.366								1730 1740							20.698 20.826					
1500 1510					17.507 17.647								1750							20.953			20.990	21.003	
1520	17.732	17.746	17.760	17.774	17.047 17.788 17.928	17.802	17.816	17.830	17.844	17.858	17.872	1520	1760 °C	-10	-9	-8	-7	-6	-5	21.077 -4	-3	-2	-1	0	1760 °C
1530 1540					18.068				17.984		18.012 18.152														
1550 1560			18.180 18.320		18.208 18.348		18.236 18.376	18.250 18.390		18.278 18.417	18.292 18.431														
1570 1580			18.459 18.599		18.487 18.627		18.515 18.654		18.543 18.682		18.571 18.710														
1590			18.738	18.752	18.766	18.779	18.793	18.807	18.821	18.835	18.849	1590													
°C	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°C													

GRADE: PLATINUM-13%

Type "R" Thermocouple Reference Tables °F N.I.S.T. Monograph 175 Revised to ITS-90

RH	ODI	JM \	/S. P	LATI	NUN	1		MAY	ІМИМ Т	EMDED				graph	175 Re	evised	to ITS		IS OF E	DDOD				TECHNOLOGI	TM ES, INC.
т	EMPER	RATUR	E IN D	EGREE	S °F	т		couple	Grade		Ext	ensior	Grade				-	Nhiche		Greate	er)		_		
				on at			32 0		2642°F 450°C		32 0	to to	300 150		1.5°		andard or 0	: .25%	0.	.6°C	Specia or	al: 0.1%	6		
				Thorm	oloctri		ao in M	lillivolts					I				Thorm	oloctri	ie Velte	ao in M	lillivolt				
°F	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°F	°F	0	1	2	3	4	5	ge 11 iv 6	7	8	9	10	°F
													600 610	2.553 2.608	2.558 2.613	2.564 2.619	2.569 2.624	2.575 2.630	2.580 2.635	2.586 2.641	2.591 2.646	2.597 2.652	2.602 2.657	2.608 2.663	600 610
													620 630	2.663 2.718	2.668	2.674 2.729	2.679 2.735	2.685 2.740	2.690 2.746	2.696 2.751	2.701 2.757	2.707 2.762	2.713 2.768	2.718 2.773	620 630
-50			-0.226	-0.224	-0.222	-0.220	-0.218	-0.216	-0.214	-0.212	-0.210	-50	640	2.773	2.779	2.785	2.735	2.740	2.801	2.807	2.812	2.818	2.824	2.829	640
-40 -30	-0.210 -0.188	-0.208 -0.185	-0.205 -0.183	-0.203 -0.181	-0.201 -0.179	-0.199 -0.176	-0.197 -0.174	-0.194 -0.172	-0.192 -0.169	-0.190 -0.167	-0.188 -0.165	-40 -30	650 660	2.829 2.885	2.835 2.891	2.840 2.896	2.846 2.902	2.851 2.907	2.857 2.913	2.863 2.919	2.868 2.924	2.874 2.930	2.879 2.935	2.885 2.941	650 660
-20 -10	-0.165 -0.141	-0.162 -0.138	-0.160 -0.136	-0.158 -0.133	-0.155 -0.131	-0.153 -0.128	-0.150 -0.126	-0.148 -0.123	-0.145 -0.121	-0.143 -0.118	-0.141 -0.116	-20 -10	670 680	2.941 2.997	2.947 3.003	2.952 3.009	2.958 3.014	2.964 3.020	2.969 3.026	2.975 3.031	2.980 3.037	2.986 3.042	2.992 3.048	2.997 3.054	670 680
0	-0.116	-0.113	-0.110	-0.108	-0.105	-0.103	-0.100	-0.097	-0.095	-0.092	-0.090	0	690	3.054	3.059	3.065	3.071	3.076	3.082	3.088	3.093	3.099	3.105	3.110	690
0 10	-0.090 -0.063	-0.087 -0.060	-0.084 -0.057	-0.082 -0.054	-0.079 -0.051	-0.076 -0.049	-0.073 -0.046	-0.071 -0.043	-0.068 -0.040	-0.065 -0.037	-0.063 -0.035	0 10	700	3.110 3.167	3.116 3.173	3.122 3.179	3.127 3.184	3.133 3.190	3.139 3.196	3.144 3.201	3.150 3.207	3.156 3.213	3.161 3.218	3.167 3.224	700 710
20 30	-0.035 -0.006	-0.032 -0.003	-0.029 0.000	-0.026 0.003	-0.023 0.006	-0.020 0.009	-0.017 0.012	-0.015 0.015	-0.012 0.018	-0.009 0.021	-0.006 0.024	20 30	720 730	3.224 3.281	3.230 3.287	3.236 3.293	3.241 3.298	3.247 3.304	3.253 3.310	3.258 3.316	3.264 3.321	3.270 3.327	3.276 3.333	3.281 3.339	720 730
40	0.024	0.027	0.030	0.033	0.036	0.039	0.042	0.045	0.048	0.051	0.054	40	740	3.339	3.344	3.350	3.356	3.362	3.367	3.373	3.379	3.385	3.390	3.396	740
50 60	0.054 0.086	0.057 0.089	0.060 0.092	0.064 0.095	0.067 0.098	0.070 0.102	0.073 0.105	0.076 0.108	0.079 0.111	0.082 0.114	0.086 0.118	50 60	750 760	3.396 3.454	3.402 3.460	3.408 3.465	3.413 3.471	3.419 3.477	3.425 3.483	3.431 3.489	3.437 3.494	3.442 3.500	3.448 3.506	3.454 3.512	750 760
70 80	0.118 0.151	0.121 0.154	0.124 0.157	0.127 0.161	0.131 0.164	0.134 0.167	0.137 0.171	0.141 0.174	0.144 0.177	0.147 0.181	0.151 0.184	70 80	770	3.512 3.570	3.517 3.576	3.523 3.581	3.529 3.587	3.535 3.593	3.541 3.599	3.546 3.605	3.552 3.610	3.558 3.616	3.564 3.622	3.570 3.628	770 780
90 100	0.184 0.218	0.188 0.222	0.191 0.225	0.194 0.229	0.198 0.232	0.201 0.236	0.205 0.239	0.208 0.243	0.212 0.246	0.215 0.250	0.218 0.254	90 100	790 800	3.628 3.686	3.634 3.692	3.640 3.698	3.645 3.704	3.651 3.710	3.657 3.716	3.663 3.721	3.669 3.727	3.675 3.733	3.680 3.739	3.686 3.745	790 800
110	0.254	0.257	0.261	0.264	0.268	0.271	0.275	0.278	0.282	0.286	0.289	110	810	3.745	3.751	3.757	3.762	3.768	3.774	3.780	3.786	3.792	3.798	3.803	810
120 130	0.289	0.293	0.296	0.300 0.337	0.304	0.307	0.311 0.348	0.315	0.318	0.322	0.326	120 130	820 830	3.803 3.862	3.809 3.868	3.815 3.874	3.821 3.880	3.827 3.886	3.833 3.892	3.839 3.898	3.845 3.904	3.851 3.909	3.856 3.915	3.862 3.921	820 830
140 150	0.363 0.400	0.366 0.404	0.370 0.408	0.374 0.412	0.378 0.416	0.382 0.420	0.385 0.423	0.389 0.427	0.393 0.431	0.397 0.435	0.400 0.439	140 150	840 850	3.921 3.980	3.927 3.986	3.933 3.992	3.939 3.998	3.945 4.004	3.951 4.010	3.957 4.016	3.963 4.022	3.969 4.028	3.975 4.034	3.980 4.040	840 850
160 170	0.439 0.478	0.443 0.482	0.447 0.486	0.450 0.489	0.454 0.493	0.458 0.497	0.462 0.501	0.466 0.505	0.470 0.509	0.474 0.513	0.478 0.517	160 170	860 870	4.040 4.099	4.046 4.105	4.052 4.111	4.058 4.117	4.064 4.123	4.069 4.129	4.075 4.135	4.081 4.141	4.087 4.147	4.093 4.153	4.099 4.159	860 870
180 190	0.517 0.557	0.521 0.561	0.525 0.565	0.529 0.569	0.533 0.573	0.537 0.578	0.541 0.582	0.545 0.586	0.549 0.590	0.553 0.594	0.557 0.598	180 190	880 890	4.159 4.219	4.165 4.225	4.171 4.231	4.177 4.237	4.183 4.243	4.189 4.249	4.195 4.255	4.201 4.261	4.207 4.267	4.213 4.273	4.219 4.279	880 890
200	0.598	0.602	0.606	0.610	0.614	0.618	0.623	0.627	0.631	0.635	0.639	200	900	4.279	4.285	4.291	4.297	4.303	4.309	4.315	4.321	4.327	4.333	4.339	900
210 220	0.639 0.681	0.643 0.685	0.647 0.689	0.652 0.693	0.656 0.698	0.660 0.702	0.664 0.706	0.668 0.710	0.672 0.715	0.677 0.719	0.681 0.723	210 220	910 920	4.339 4.399	4.345 4.405	4.351 4.411	4.357 4.417	4.363 4.423	4.369 4.429	4.375 4.435	4.381 4.441	4.387 4.447	4.393 4.453	4.399 4.459	910 920
230 240	0.723 0.766	0.727 0.770	0.732 0.774	0.736 0.779	0.740 0.783	0.744 0.787	0.749 0.792	0.753 0.796	0.757 0.800	0.761 0.805	0.766 0.809	230 240	930 940	4.459 4.520	4.465 4.526	4.471 4.532	4.477 4.538	4.483 4.544	4.489 4.550	4.495 4.556	4.502 4.562	4.508 4.568	4.514 4.574	4.520 4.580	930 940
250 260	0.809 0.853	0.813 0.857	0.818 0.861	0.822 0.866	0.826 0.870	0.831 0.875	0.835 0.879	0.839 0.883	0.844 0.888	0.848 0.892	0.853 0.897	250 260	950 960	4.580 4.641	4.586 4.647	4.593 4.653	4.599 4.659	4.605 4.666	4.611 4.672	4.617 4.678	4.623 4.684	4.629 4.690	4.635 4.696	4.641 4.702	950 960
270 280	0.897 0.941	0.901 0.946	0.906 0.950	0.910 0.955	0.915 0.959	0.919 0.964	0.923 0.968	0.928 0.973	0.932 0.977	0.937 0.982	0.941 0.986	270 280	970 980	4.702 4.763	4.708 4.769	4.714 4.775	4.720 4.782	4.727 4.788	4.733 4.794	4.739 4.800	4.745 4.806	4.751 4.812	4.757 4.818	4.763 4.824	970 980
290	0.986	0.991	0.995	1.000	1.005	1.009	1.014	1.018	1.023	1.027	1.032	290	990	4.824	4.831	4.837	4.843	4.849	4.855	4.861	4.867	4.874	4.880	4.886	990
300 310	1.032 1.078	1.036 1.082	1.041 1.087	1.046 1.092	1.050 1.096	1.055 1.101	1.059 1.105	1.064 1.110	1.069 1.115	1.073 1.119	1.078 1.124	300 310	1000	4.886 4.947	4.892 4.954	4.898 4.960	4.904 4.966	4.910 4.972	4.917 4.978	4.923 4.984	4.929 4.991	4.935 4.997	4.941 5.003	4.947 5.009	1000 1010
320 330	1.124 1.171	1.129 1.175	1.133 1.180	1.138 1.185	1.143 1.190	1.147 1.194	1.152 1.199	1.157 1.204	1.161 1.208	1.166 1.213	1.171 1.218	320 330	1020 1030	5.009 5.071	5.015 5.077	5.021 5.083	5.028 5.090	5.034 5.096	5.040 5.102	5.046 5.108	5.052 5.114	5.059 5.121	5.065 5.127	5.071 5.133	1020 1030
340	1.218	1.223	1.227	1.232	1.237	1.242	1.246	1.251	1.256	1.261	1.265	340	1040	5.133	5.139	5.145	5.152	5.158	5.164	5.170	5.176	5.183	5.189	5.195	1040
350 360	1.265 1.313	1.270 1.318	1.275 1.323	1.280 1.328	1.284 1.332	1.289 1.337	1.294 1.342	1.299 1.347	1.304 1.352	1.308 1.356	1.313 1.361	350 360	1050 1060	5.195 5.257	5.201 5.264	5.207 5.270	5.214 5.276	5.220 5.282	5.226 5.289	5.232 5.295	5.239 5.301	5.245 5.307	5.251 5.313	5.257 5.320	1050 1060
370 380	1.361 1.410	1.366 1.415	1.371 1.420	1.425	1.381 1.429	1.386 1.434	1.390 1.439	1.395 1.444	1.400 1.449	1.405 1.454	1.410 1.459	370 380	1070 1080	5.320 5.382	5.326 5.389	5.332 5.395	5.338 5.401	5.345 5.407	5.351 5.414	5.357 5.420	5.364 5.426	5.370 5.432	5.376 5.439	5.382 5.445	1070 1080
390 400	1.459 1.508	1.464 1.513	1.469 1.518		1.478 1.528	1.483 1.533	1.488 1.538	1.493 1.543	1.498 1.548	1.503 1.553	1.508 1.558	390 400	1090	5.445 5.508	5.451 5.514	5.458 5.520	5.464 5.527	5.470 5.533	5.476 5.539	5.483 5.546	5.489 5.552	5.495 5.558	5.502 5.565	5.508 5.571	
410 420	1.558 1.607	1.563 1.612	1.568 1.617		1.577 1.627	1.582 1.632	1.587 1.638	1.592 1.643	1.597 1.648	1.602 1.653	1.607 1.658	410 420	1110	5.571 5.634	5.577 5.640	5.583 5.647	5.590 5.653	5.596 5.659	5.602 5.666	5.609 5.672	5.615 5.678	5.621 5.685	5.628 5.691	5.634 5.697	1110
430 440	1.658 1.708	1.663	1.668 1.718	1.673	1.678	1.683 1.733	1.688	1.693 1.744	1.698	1.703	1.708	430 440	1130	5.697 5.761	5.704	5.710 5.773	5.716	5.723 5.786	5.729	5.735 5.799	5.742 5.805	5.748	5.754 5.818	5.761 5.824	1130
450	1.759	1.764	1.769	1.774	1.728 1.779	1.784	1.739 1.790	1.795	1.749 1.800	1.754 1.805	1.759 1.810	450	1150	5.824	5.767 5.831	5.837	5.780 5.843	5.850	5.792 5.856	5.862	5.869	5.812 5.875	5.882	5.888	1150
460 470	1.810 1.861	1.815 1.867	1.820 1.872	1.825 1.877	1.831 1.882	1.836 1.887	1.841 1.892	1.846 1.898	1.851 1.903	1.856 1.908	1.861 1.913	460 470	1160 1170	5.888 5.952	5.894 5.958	5.901 5.965	5.907 5.971	5.913 5.977	5.920 5.984	5.926 5.990	5.933 5.997	5.939 6.003	5.945 6.009	5.952 6.016	1170
480 490	1.913 1.965	1.918 1.970	1.923 1.975	1.929 1.981	1.934 1.986	1.939 1.991	1.944 1.996	1.949 2.002	1.955 2.007	1.960 2.012	1.965 2.017	480 490	1180 1190	6.016 6.080	6.022 6.086	6.029 6.093	6.035 6.099	6.041 6.106	6.048 6.112	6.054 6.119	6.061 6.125	6.067 6.131	6.074 6.138	6.080 6.144	
500	2.017	2.022 2.075	2.028	2.033	2.038	2.043	2.049	2.054	2.059	2.064	2.070	500	1200	6.144	6.151	6.157	6.164	6.170	6.176	6.183	6.189	6.196	6.202		1200
510 520	2.070 2.122	2.128	2.080 2.133	2.085 2.138	2.091 2.144	2.096 2.149	2.101 2.154	2.107 2.159	2.112 2.165	2.117 2.170	2.122 2.175	510 520	1210 1220	6.209 6.273	6.215 6.280	6.222 6.286	6.228 6.293	6.235 6.299	6.241 6.306	6.247 6.312	6.254 6.319	6.260 6.325	6.267 6.332	6.338	1220
530 540	2.175 2.229	2.181 2.234	2.186 2.239	2.191 2.245	2.197 2.250	2.202 2.255	2.207 2.261	2.213 2.266	2.218 2.271	2.223 2.277	2.229 2.282	530 540	1230 1240	6.338 6.403	6.345 6.409	6.351 6.416	6.358 6.422	6.364 6.429	6.370 6.435	6.377 6.442	6.383 6.448	6.390 6.455	6.396 6.461	6.403 6.468	1230 1240
550 560	2.282 2.336	2.287 2.341	2.293 2.347	2.298 2.352	2.304 2.357	2.309 2.363	2.314 2.368	2.320 2.374	2.325 2.379	2.330 2.384	2.336 2.390	550 560	1250 1260	6.468 6.533	6.474 6.540	6.481 6.546	6.488 6.553	6.494 6.559	6.501 6.566	6.507 6.572	6.514 6.579	6.520 6.585	6.527 6.592		1250 1260
570 580	2.390 2.444	2.395 2.449	2.401 2.455	2.406 2.460	2.411 2.466	2.417 2.471	2.422 2.477	2.428	2.433 2.487	2.438 2.493	2.444 2.498	570 580	1200 1270 1280	6.598 6.664	6.605 6.671	6.612 6.677	6.618 6.684	6.625 6.690	6.631 6.697	6.638 6.703	6.644 6.710	6.651 6.716	6.657 6.723	6.664 6.730	
590	2.498	2.504	2.509	2.515	2.520	2.526	2.531	2.537	2.542	2.547	2.553	590	1290	6.730	6.736	6.743	6.749	6.756	6.762	6.769	6.776	6.782	6.789	6.795	1290
°F	0	1	2	3	4	5	6	7	8	9	10	°F	°F	0	1	2	3	4	5	6	7	8	9	10	°F
												11	2												

Type "R" Thermocouple Reference Tables °F N.I.S.T. Monograph 175 Revised to ITS-90

GRADE:

PLATINUM-13%

TECHNOLOGIES, INC.	MAXIMUM TEN	MPERATURE GRADE	15 Revised to H	LIMITS OF ERROR	RHODIUM VS. PLATINUM
	Thermocouple Grade: 32 to 2642°F	Extension Grade: 32 to 300°F	Standar	(Whichever is Greater)	TEMPERATURE IN DEGREES °F
	0 to 1450°C	0 to 150°C		0.25% 0.6°C or	0.1% REFERENCE JUNCTION AT 32°F
		Voltage in Millivolts			pelectric Voltage in Millivolts
°F 0 1 1300 6.795 6.802		5 6 7 8 9 5.828 6.835 6.841 6.848 6.855	10 °F °F 6.861 1300 2000	0 1 2 3	4 5 6 7 8 9 10 °F 11.789 11.797 11.804 11.812 11.819 11.827 11.834 2000
1310 6.861 6.868 1320 6.927 6.934	8 6.874 6.881 6.888 6.	5.894 6.901 6.907 6.914 6.921 5.960 6.967 6.974 6.980 6.987	6.927 1310 2010 6.994 1320 2020	0 11.834 11.842 11.850 11.857	11.865 11.872 11.880 11.888 11.895 11.903 11.910 2010 11.941 11.948 11.956 11.963 11.971 11.979 11.986 2020
1330 6.994 7.000	0 7.007 7.013 7.020 7.	7.027 7.033 7.040 7.047 7.053	7.060 1330 2030	0 11.986 11.994 12.001 12.009	12.016 12.024 12.032 12.039 12.047 12.054 12.062 2030
1340 7.060 7.06 1350 7.126 7.13		7.093 7.100 7.106 7.113 7.120 7.160 7.166 7.173 7.180 7.186	7.126 1340 2040 7.193 1350 2050		12.092 12.100 12.108 12.115 12.123 12.131 12.138 2040 12.169 12.176 12.184 12.191 12.199 12.207 12.214 2050
1360 7.193 7.200 1370 7.260 7.260		7.226 7.233 7.240 7.247 7.253 7.293 7.300 7.307 7.313 7.320	7.260 1360 2060 7.327 1370 2070		12.245 12.252 12.260 12.268 12.275 12.283 12.291 2060 12.321 12.329 12.336 12.344 12.352 12.359 12.367 2070
1380 7.327 7.334 1390 7.394 7.40		7.360 7.367 7.374 7.381 7.387 7.428 7.434 7.441 7.448 7.454	7.394 1380 2080 7.461 1390 2090		12.397 12.405 12.413 12.420 12.428 12.436 12.443 2080 12.474 12.482 12.489 12.497 12.505 12.512 12.520 2090
1400 7.461 7.468 1410 7.529 7.535	8 7.475 7.481 7.488 7.	7.495 7.502 7.508 7.515 7.522 7.562 7.569 7.576 7.583 7.589	7.529 1400 2100 7.596 1410 2110	0 12.520 12.528 12.535 12.543	
1410 7.525 7.533 1420 7.596 7.603 1430 7.664 7.67	3 7.610 7.616 7.623 7.	7.502 7.509 7.570 7.503 7.589 7.630 7.637 7.644 7.650 7.657 7.698 7.705 7.711 7.718 7.725	7.664 1420 2120 7.732 1430 2130	0 12.673 12.681 12.689 12.696	12.704 12.712 12.719 12.727 12.735 12.742 12.750 2120
1430 7.004 7.07		1.766 7.772 7.779 7.786 7.793	7.800 1440 2140		12.858 12.865 12.873 12.881 12.889 12.896 12.904 2140
1450 7.800 7.807 1460 7.868 7.875		7.8347.8417.8477.8547.8617.9027.9097.9167.9227.929	7.868 1450 2150 7.936 1460 2160		12.93512.94212.95012.95812.96612.97312.981215013.01213.01913.02713.03513.04313.05013.0582160
1470 7.936 7.943 1480 8.005 8.011		7.9707.9777.9847.9917.9983.0398.0468.0538.0598.066	8.005 1470 2170 8.073 1480 2180		
1490 8.073 8.080 1500 8.142 8.149		8.1088.1148.1218.1288.1353.1768.1838.1908.1978.204	8.142 1490 2190 8.211 1500 2200		13.243 13.251 13.259 13.267 13.274 13.282 13.290 2190 13.321 13.329 13.336 13.344 13.352 13.359 13.367 2200
1510 8.211 8.218 1520 8.280 8.287	8 8.225 8.232 8.238 8.	8.245 8.252 8.259 8.266 8.273 3.314 8.321 8.328 8.335 8.342	8.280 1510 2210 8.349 1520 2220	0 13.367 13.375 13.383 13.390	
1530 8.349 8.356 1540 8.418 8.42	6 8.363 8.370 8.377 8 .	8.384 8.391 8.398 8.405 8.411 8.453 8.460 8.467 8.474 8.481	8.418 1530 2230 8.488 1540 2240	0 13.522 13.530 13.538 13.545	13.553 13.561 13.569 13.577 13.584 13.592 13.600 2230 13.631 13.639 13.646 13.654 13.662 13.670 13.677 2240
1550 8.488 8.495	5 8.502 8.509 8.516 8.	3.523 8.530 8.537 8.544 8.551	8.557 1550 2250) 13.677 13.685 13.693 13.701	13.709 13.716 13.724 13.732 13.740 13.747 13.755 2250
1560 8.557 8.564 1570 8.627 8.634	4 8.641 8.648 8.655 8.	3.592 8.599 8.606 8.613 8.620 3.662 8.669 8.676 8.683 8.690	8.627 1560 2260 8.697 1570 2270	0 13.833 13.841 13.848 13.856	13.864 13.872 13.880 13.887 13.895 13.903 13.911 2270
1580 8.697 8.704 1590 8.767 8.774		3.7328.7398.7468.7538.7603.8028.8098.8168.8238.830	8.767 1580 2280 8.837 1590 2290		13.942 13.950 13.957 13.965 13.973 13.981 13.989 2280 14.020 14.028 14.035 14.043 14.051 14.059 14.066 2290
1600 8.837 8.844 1610 8.908 8.915		3.8738.8808.8878.8948.9013.9438.9508.9578.9648.971	8.908 1600 2300 8.978 1610 2310		14.09814.10514.11314.12114.12914.13714.144230014.17614.18314.19114.19914.20714.21514.2222310
1620 8.978 8.985 1630 9.049 9.056		0.0149.0219.0289.0359.0420.0849.0919.0989.1069.113	9.049 1620 2320 9.120 1630 2330		14.25414.26114.26914.27714.28514.29314.300232014.33214.34014.34714.35514.36314.37114.3792330
1640 9.120 9.12 1650 9.191 9.198		9.1559.1629.1699.1769.1849.2269.2339.2409.2489.255	9.191 1640 2340 9.262 1650 2350		14.410 14.418 14.425 14.433 14.441 14.449 14.457 2340 14.488 14.496 14.504 14.511 14.519 14.527 14.535 2350
1660 9.262 9.269	9 9.276 9.283 9.290 9.	9.220 9.235 9.240 9.246 9.255 9.297 9.304 9.312 9.319 9.326 9.369 9.376 9.383 9.390 9.397	9.333 1660 2360 9.404 1670 2370	0 14.535 14.543 14.551 14.558	14.566 14.574 14.582 14.590 14.597 14.605 14.613 2360
1680 9.404 9.411	1 9.419 9.426 9.433 9.	9.440 9.447 9.454 9.461 9.469	9.476 1680 2380	0 14.691 14.699 14.707 14.715	14.723 14.730 14.738 14.746 14.754 14.762 14.770 2380
1690 9.476 9.483 1700 9.547 9.555	5 9.562 9.569 9.576 9.	0.5129.5199.5269.5339.5400.5839.5909.5989.6059.612	9.547169023909.61917002400		14.801 14.809 14.817 14.824 14.832 14.840 14.848 2390 14.879 14.887 14.895 14.903 14.911 14.918 14.926 2400
1710 9.619 9.626 1720 9.691 9.698		9.6559.6629.6709.6779.6849.7279.7349.7429.7499.756	9.691 1710 2410 9.763 1720 2420		14.95814.96514.97314.98114.98914.99715.005241015.03615.04415.05215.05915.06715.07515.0832420
1730 9.763 9.770 1740 9.835 9.843		9.7999.8069.8149.8219.8289.8729.8799.8869.8939.900	9.835 1730 2430 9.908 1740 2440		15.11415.12215.13015.13815.14615.15315.161243015.19315.20015.20815.21615.22415.23215.2402440
1750 9.908 9.915 1760 9.980 9.987		0.944 9.951 9.958 9.966 9.973 0.016 10.024 10.031 10.038 10.046	9.980 1750 2450 10.053 1760 2460		15.271 15.279 15.287 15.295 15.302 15.310 15.318 2450 15.349 15.357 15.365 15.373 15.381 15.389 15.397 2460
1770 10.053 10.06	60 10.067 10.075 10.082 10	0.089 10.096 10.104 10.111 10.118 0.162 10.169 10.177 10.184 10.191	10.126 1770 2470	0 15.397 15.404 15.412 15.420	15.428 15.436 15.444 15.451 15.459 15.467 15.475 2470 15.506 15.514 15.522 15.530 15.538 15.546 15.553 2480
1790 10.198 10.20	06 10.213 10.220 10.228 10	0.235 10.242 10.250 10.257 10.264	10.271 1790 2490	0 15.553 15.561 15.569 15.577	15.585 15.593 15.601 15.608 15.616 15.624 15.632 2490
1810 10.345 10.35	52 10.359 10.367 10.374 10	0.308 10.315 10.323 10.330 10.337 0.381 10.389 10.396 10.403 10.411	10.418 1810 2510	0 15.710 15.718 15.726 15.734	15.663 15.671 15.679 15.687 15.695 15.703 15.710 2500 15.742 15.750 15.758 15.765 15.773 15.781 15.789 2510
1830 10.491 10.49	9 10.506 10.513 10.521 10	0.455 10.462 10.469 10.477 10.484 0.528 10.535 10.543 10.550 10.557	10.565 1830 2530	0 15.867 15.875 15.883 15.891	15.820 15.828 15.836 15.844 15.852 15.860 15.867 2520 15.899 15.907 15.915 15.922 15.930 15.938 15.946 2530
		0.60210.60910.61610.62410.6310.67510.68310.69010.69810.705			15.977 15.985 15.993 16.001 16.009 16.017 16.024 2540 16.056 16.064 16.071 16.079 16.087 16.095 16.103 2550
1860 10.712 10.72	20 10.727 10.734 10.742 10	0.749 10.757 10.764 10.771 10.779 0.823 10.831 10.838 10.845 10.853	10.786 1860 2560	0 16.103 16.111 16.119 16.126	16.134 16.142 16.150 16.158 16.166 16.174 16.181 2560 16.213 16.221 16.228 16.236 16.244 16.252 16.260 2570
1880 10.860 10.86	68 10.875 10.883 10.890 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.934 1880 2580	0 16.260 16.268 16.276 16.283	16.291 16.299 16.307 16.315 16.323 16.330 16.338 2580 16.370 16.378 16.385 16.393 16.401 16.409 16.417 2590
1900 11.009 11.01	16 11.024 11.031 11.039 11	1.046 11.053 11.061 11.068 11.076	11.083 1900 2600) 16.417 16.425 16.432 16.440	16.448 16.456 16.464 16.472 16.480 16.487 16.495 2600
1920 11.158 11.16	5 11.173 11.180 11.188 11	1.121 11.128 11.135 11.143 11.150 1.195 11.203 11.210 11.218 11.225 1.270 11.277 11.205 11.203 11.205	11.233 1920 2620	0 16.574 16.582 16.589 16.597	16.527 16.534 16.542 16.550 16.558 16.566 16.574 2610 16.605 16.613 16.621 16.636 16.644 16.652 2620 16.604 16.601 16.714 16.714 2620 2620
		1.27011.27711.28511.29211.3001.34511.35211.36011.36711.375			16.683 16.691 16.699 16.707 16.715 16.723 16.731 2630 16.762 16.770 16.778 16.785 16.793 16.801 16.809 2640
		1.42011.42711.43511.44211.4501.49511.50211.51011.51811.525			16.840 16.848 16.856 16.864 16.872 16.879 16.887 2650 16.919 16.926 16.934 16.942 16.950 16.958 16.966 2660
1970 11.533 11.54	0 11.548 11.555 11.563 11	1.57011.57811.58511.59311.6001.64611.65311.66111.66811.676	11.608 1970 2670	0 16.966 16.973 16.981 16.989	16.997 17.005 17.013 17.020 17.028 17.036 17.044 2670 17.075 17.083 17.091 17.099 17.107 17.114 17.122 2680
	91 11.698 11.706 11.714 11	1.721 11.729 11.736 11.744 11.751 5 6 7 8 9			17.154 17.161 17.169 17.177 17.185 17.193 17.200 2690 4 5 6 7 8 9 10 °F
r V I	2 3 4	5 0 7 0 9		0 1 2 3	ז עו פיסי, ט ניד
			10.4		

PLATINUM-13% Type "R" Thermocouple Reference Tables C	
RHODIUM VS. PLATINUM	
TEMPERATURE IN DEGREES °F 32 to 2642°F 32 to 300°F Standard: Sta	ecial:
REFERENCE JUNCTION AT 32°F 0 to 1450°C 0 to 150°C 1.5°C or 0.25% 0.6°C o	or 0.1%
Thermoelectric Voltage in Millivolts Thermoelectric Voltage in Millivolts °F 0 1 2 3 4 5 6 7 8 9 10 °F °F 0 1 2 3 4 5 6 7 2700 17.206 17.224 17.224 17.225 17.255 17.255 17.255 17.255 17.255 17.255 17.357 17.305 19.532 19.542 19.542 19.543 19.541 19.559 19.563 19.570 19.721 2720 17.357 17.335 17.301 17.318 17.305 17.441 17.441 17.452 17.435 19.551 19.563 19.571 19.776 19.778 19.776 19.778 19.776 19.778 19.776 19.781 19.796 19.781 19.796 19.796 19.781 19.796 19.781 19.796 19.781 19.796 19.781 19.796 19.781 19.796 19.781 19.799	volts s 9 10 °F 7 8 9 10,0 °F 1578 19,586 19,537 19,670 1000 1654 19,670 19,677 1010 1730 19,738 19,746 19,575 3020 1807 19,814 19,822 19,829 3030 1882 19,890 19,829 19,905 3040 1958 19,966 19,973 19,913 3050 1004 20,041 20,149 20,132 3070 1005 20,117 20,124 20,132 3070 1104 20,122 20,174 20,281 3060 1259 20,266 20,274 20,281 3060 1441 20,488 20,492 20,356 3100 1441 20,488 20,496 20,563 3100 1554 20,562 20,569 20,574 3130 1627 20,634 20,562 </th
125	

Type "S" Thermocouple Reference Tables °C N.I.S.T. Monograph 175 Revised to ITS-90

GRADE: PLATINUM-10%

TECHN	DLOGIES, INC.			МАХ		FMPFR			-	rapn	175 Re	vised	10 11 5		'S OF E	RROR				RHO	DIUN	/ VS	. PL/	ATINU	JM
	MAXIMUM TEMPERATURE GRADE Thermocouple Grade: Extension Grade: 32 to 2642°F 32 to 300°F 0 to 1450°C 0 to 150°C								St.	۱) andard	Nhiche			r) Specia	əl•	D.1% TEMPERATURE IN DEGREES °C REFERENCE JUNCTION AT 0°C									
											1.5°).25%	0.	6°C	or		6	REF	ERENO	e jun	CTION	AT 0°	С
								illivolts																	
°C -40	-10 -0.236	-9 -0.232	-8 -0.228	-7 -0.224	-6 -0.219	-5 -0.215	-4 -0.211	-3 -0.207	-2 -0.203	-1 -0.199	0 -0.194	°C -40	°C 650	0 5.753	1 5.763	2 5.774	3 5.784	4 5.794	5 5.805	6 5.815	7 5.826	8 5.836	9 5.846	10 5.857	°C 650
-30	-0.194 -0.150	-0.190	-0.186	-0.181	-0.177	-0.173 -0.127	-0.168	-0.164	-0.159 -0.113	-0.155	-0.154 -0.150 -0.103	-30 -20	660	5.857 5.961	5.867 5.971	5.878 5.982	5.888 5.992	5.898 6.003	5.909 6.013	5.919 6.024	5.930 6.034	5.940 6.044	5.950 6.055	5.961 6.065	660 670
-20 -10	-0.103	-0.146 -0.098	-0.141 -0.093	-0.088	-0.083	-0.078	-0.073	-0.117 -0.068	-0.063	-0.108 -0.058	-0.053	-10	670 680	6.065	6.076	6.086	6.097	6.107	6.118	6.128	6.139	6.149	6.160	6.170	680
0	-0.053 0.000	-0.048 0.005	-0.042 0.011	-0.037 0.016	-0.032 0.022	-0.027 0.027	-0.021 0.033	-0.016 0.038	-0.011 0.044	-0.005 0.050	0.000 0.055	0 0	690 700	6.170 6.275	6.181 6.286	6.191 6.296	6.202 6.307	6.212 6.317	6.223 6.328	6.233 6.338	6.244 6.349	6.254 6.360	6.265 6.370	6.275 6.381	690 700
10 20	0.055 0.113	0.061 0.119	0.067 0.125	0.072 0.131	0.078 0.137	0.084 0.143	0.090 0.149	0.095 0.155	0.101 0.161	0.107 0.167	0.113 0.173	10 20	710 720	6.381 6.486	6.391 6.497	6.402 6.508	6.412 6.518	6.423 6.529	6.434 6.539	6.444 6.550	6.455 6.561	6.465 6.571	6.476 6.582	6.486 6.593	710 720
30 40	0.173	0.179 0.241	0.185	0.191 0.254	0.197	0.204 0.267	0.210 0.273	0.216	0.222	0.229	0.235	30 40	730 740	6.593 6.699	6.603 6.710	6.614 6.720	6.624 6.731	6.635 6.742	6.646 6.752	6.656 6.763	6.667 6.774	6.678 6.784	6.688 6.795	6.699 6.806	730 740
50	0.299	0.305	0.312	0.319	0.325	0.332	0.338	0.345	0.352	0.358	0.365	50	750	6.806	6.817	6.827	6.838	6.849	6.859	6.870	6.881	6.892	6.902	6.913	750
60 70	0.365 0.433	0.372 0.440	0.378 0.446	0.385 0.453	0.392 0.460	0.399 0.467	0.405 0.474	0.412 0.481	0.419 0.488	0.426 0.495	0.433 0.502	60 70	760 770	6.913 7.020	6.924 7.031	6.934 7.042	6.945 7.053	6.956 7.064	6.967 7.074	6.977 7.085	6.988 7.096	6.999 7.107	7.010 7.117	7.020 7.128	760 770
80 90	0.502 0.573	0.509 0.580	0.516 0.588	0.523 0.595	0.530 0.602	0.538 0.609	0.545 0.617	0.552 0.624	0.559 0.631	0.566 0.639	0.573 0.646	80 90	780 790	7.128 7.236	7.139 7.247	7.150 7.258	7.161 7.269	7.172 7.280	7.182 7.291	7.193 7.302	7.204 7.312	7.215 7.323	7.226 7.334	7.236 7.345	780 790
100 110	0.646 0.720	0.653 0.727	0.661 0.735	0.668 0.743	0.675 0.750	0.683 0.758	0.690 0.765	0.698 0.773	0.705 0.780	0.713 0.788	0.720 0.795	100 110	800 810	7.345 7.454	7.356 7.465	7.367 7.476	7.378 7.487	7.388 7.497	7.399 7.508	7.410 7.519	7.421 7.530	7.432 7.541	7.443 7.552	7.454 7.563	800 810
120 130	0.795 0.872	0.803	0.735 0.811 0.888	0.743 0.818 0.896	0.826	0.834 0.911	0.841 0.919	0.849	0.857 0.935	0.865	0.872	120 130	820 830	7.563 7.673	7.574 7.684	7.585	7.596	7.607 7.717	7.618	7.629	7.640 7.750	7.651 7.761	7.662	7.673 7.783	820 830
140	0.872	0.880 0.958	0.888	0.896	0.903	0.990	0.998	1.006	1.013	1.021	1.029	140	830 840	7.783	7.794	7.805	7.706 7.816	7.827	7.728 7.838	7.739 7.849	7.860	7.871	7.882	7.893	830 840
150 160	1.029 1.110	1.037 1.118	1.045 1.126	1.053 1.134	1.061 1.142	1.069 1.150	1.077 1.158	1.085 1.167	1.094 1.175	1.102 1.183	1.110 1.191	150 160	850 860	7.893 8.003	7.904 8.014	7.915 8.026	7.926 8.037	7.937 8.048	7.948 8.059	7.959 8.070	7.970 8.081	7.981 8.092	7.992 8.103	8.003 8.114	850 860
170 180	1.191 1.273	1.199 1.282	1.207 1.290	1.216 1.298	1.224 1.307	1.232 1.315	1.240 1.323	1.249 1.332	1.257 1.340	1.265 1.348	1.273 1.357	170 180	870 880	8.114 8.226	8.125 8.237	8.137 8.248	8.148 8.259	8.159 8.270	8.170 8.281	8.181 8.293	8.192 8.304	8.203 8.315	8.214 8.326	8.226 8.337	870 880
190 200	1.357	1.365 1.449	1.373	1.382	1.390	1.399 1.483	1.407	1.415	1.424 1.509	1.432	1.441 1.526	190 200	890	8.337	8.348	8.360	8.371	8.382 8.494	8.393 8.505	8.404	8.416 8.528	8.427 8.539	8.438 8.550	8.449 8.562	890 900
200 210	1.441 1.526	1.534	1.458 1.543	1.466 1.551	1.475 1.560	1.569	1.492 1.577	1.500 1.586	1.594	1.517 1.603	1.612	200 210	900 910	8.449 8.562	8.460 8.573	8.472 8.584	8.483 8.595	8.607	8.618	8.517 8.629	8.640	8.652	8.663	8.674	910
220 230	1.612 1.698	1.620 1.707	1.629 1.716	1.638 1.724	1.646 1.733	1.655 1.742	1.663 1.751	1.672 1.759	1.681 1.768	1.690 1.777	1.698 1.786	220 230	920 930	8.674 8.787	8.685 8.798	8.697 8.810	8.708 8.821	8.719 8.832	8.731 8.844	8.742 8.855	8.753 8.866	8.765 8.878	8.776 8.889	8.787 8.900	920 930
240 250	1.786 1.874	1.794 1.882	1.803 1.891	1.812 1.900	1.821 1.909	1.829 1.918	1.838 1.927	1.847 1.936	1.856 1.944	1.865 1.953	1.874 1.962	240 250	940 950	8.900 9.014	8.912 9.025	8.923 9.037	8.935 9.048	8.946 9.060	8.957 9.071	8.969 9.082	8.980 9.094	8.991 9.105	9.003 9.117	9.014 9.128	940 950
260 270	1.962 2.052	1.971 2.061	1.980 2.070	1.989 2.078	1.998 2.087	2.007 2.096	2.016 2.105	2.025 2.114	2.034 2.123	2.043 2.132	2.052 2.141	260 270	960 970	9.128 9.242	9.139 9.254	9.151 9.265	9.162 9.277	9.174 9.288	9.185 9.300	9.197 9.311	9.208 9.323	9.219 9.334	9.231 9.345	9.242 9.357	960 970
280 290	2.141 2.232	2.151 2.241	2.160 2.250	2.169 2.259	2.178 2.268	2.187 2.277	2.196 2.287	2.205 2.296	2.214 2.305	2.223 2.314	2.232 2.323	280 290	980 990	9.357 9.472	9.368 9.483	9.380 9.495	9.391 9.506	9.403 9.518	9.414 9.529	9.426 9.541	9.437 9.552	9.449 9.564	9.460 9.576	9.472 9.587	980 990
300 310	2.323 2.415	2.332 2.424	2.341	2.350 2.442	2.360 2.451	2.369 2.461	2.378 2.470	2.387 2.479	2.396 2.488	2.405 2.497	2.415 2.507	300 310	1000	9.587 9.703	9.599 9.714	9.610 9.726	9.622 9.737	9.633 9.749	9.645 9.761	9.656	9.668 9.784	9.680 9.795	9.691 9.807	9.703 9.819	1000 1010
320	2.507	2.516	2.433 2.525	2.534	2.544	2.553	2.562	2.571	2.581	2.590	2.599	320	1010 1020	9.819	9.830	9.842	9.853	9.865	9.877	9.772 9.888	9.900	9.911	9.923	9.935	1020
330 340	2.599 2.692	2.609 2.702	2.618 2.711	2.627 2.720	2.636 2.730	2.646 2.739	2.655 2.748	2.664 2.758	2.674 2.767	2.683 2.776	2.692 2.786	330 340	1030 1040	9.935 10.051	9.946 10.063	9.958 10.075	9.970 10.086	9.981 10.098	9.993 10.110	10.005 10.121	10.016 10.133	10.028 10.145	10.040 10.156	10.051 10.168	1030 1040
350 360	2.786 2.880	2.795 2.889	2.805 2.899	2.814 2.908	2.823 2.917	2.833 2.927	2.842 2.936	2.851 2.946	2.861 2.955	2.870 2.965	2.880 2.974	350 360	1050 1060	10.168 10.285	10.180 10.297	10.191 10.309	10.203 10.320		10.227 10.344	10.238 10.356	10.250 10.367	10.262 10.379	10.273 10.391	10.285 10.403	1050 1060
370 380	2.974 3.069	2.983 3.078	2.993 3.088	3.002 3.097	3.012 3.107	3.021 3.116	3.031 3.126	3.040 3.135	3.050 3.145	3.059 3.154	3.069 3.164	370 380	1070 1080	10.403 10.520	10.414 10.532	10.426 10.544	10.438 10.556	10.450 10.567	10.461 10.579	10.473 10.591	10.485 10.603	10.497 10.615	10.509 10.626	10.520 10.638	1070 1080
390	3.164 3.259	3.173 3.269	3.183 3.279	3.192 3.288	3.202 3.298	3.212 3.307	3.221 3.317	3.231 3.326	3.240 3.336	3.250 3.346	3.259 3.355	390 400	1090 1100							10.709 10.828	10.721		10.745		1090 1100
400 410	3.355	3.365	3.374	3.384	3.394	3.403	3.413	3.423	3.432	3.442	3.451	410	1110	10.875	10.887	10.899	10.911	10.922	10.934	10.946	10.958	10.970	10.982	10.994	1110
420 430	3.451 3.548	3.461 3.558	3.471 3.567	3.480 3.577	3.490 3.587	3.500 3.596	3.509 3.606	3.519 3.616	3.529 3.626	3.538 3.635	3.548 3.645	420 430	1120 1130	11.113	11.125	11.136	11.148	11.160	11.172	11.065 11.184	11.196	11.208	11.220	11.232	1130
440 450	3.645 3.742	3.655 3.752	3.664 3.762	3.674 3.771	3.684 3.781	3.694 3.791	3.703 3.801	3.713 3.810	3.723	3.732 3.830	3.742 3.840	440 450	1140							11.303 11.423					
460 470	3.840 3.938	3.850 3.947	3.859 3.957	3.869 3.967	3.879 3.977	3.889 3.987	3.898 3.997	3.908 4.006	3.918 4.016	3.928 4.026	3.938 4.036	460 470	1160 1170							11.542 11.662					
480 490	4.036 4.134	4.046 4.144	4.056 4.154	4.065 4.164	4.075 4.174	4.085 4.184	4.095 4.194	4.105 4.204	4.115 4.213	4.125 4.223	4.134 4.233	480 490	1180 1190							11.782 11.902					
500	4.233	4.243	4.253	4.263	4.273	4.283	4.293	4.303	4.313	4.323	4.332	500	1200	11.951	11.963	11.975	11.987	11.999	12.011	12.023	12.035	12.047	12.059	12.071	1200
510 520	4.332 4.432	4.342	4.352 4.452	4.362 4.462	4.372 4.472	4.382 4.482	4.392 4.492	4.502	4.412 4.512	4.422 4.522	4.432 4.532	510 520	1210 1220	12.191	12.203	12.216	12.228	12.240	12.252	12.143 12.264	12.276	12.288	12.300	12.312	1220
530 540	4.532 4.632	4.542 4.642	4.552 4.652	4.562 4.662	4.572 4.672	4.582 4.682	4.592 4.692		4.612 4.712	4.622 4.722	4.632 4.732	530 540	1230 1240							12.384 12.505					
550 560	4.732 4.833	4.742 4.843	4.752 4.853	4.762 4.863	4.772 4.873	4.782 4.883	4.793 4.893	4.803 4.904	4.813 4.914	4.823 4.924	4.833 4.934	550 560	1250 1260							12.626 12.747					
570 580	4.934 5.035	4.944 5.045	4.954 5.055	4.964 5.066	4.974 5.076	4.984 5.086	4.995 5.096	5.005 5.106	5.015 5.116	5.025 5.127	5.035 5.137	570 580	1270 1280	12.796	12.808	12.820	12.832	12.844	12.856	12.868 12.989	12.880	12.892	12.905	12.917	1270
590	5.137	5.147	5.157	5.167	5.178	5.188	5.198	5.208	5.218	5.228	5.239	590	1290	13.038	13.050	13.062	13.074	13.086	13.098	13.111	13.123	13.135	13.147	13.159	1290
600 610	5.239 5.341	5.249 5.351	5.259 5.361	5.269 5.372	5.280 5.382	5.290 5.392	5.300 5.402	5.310 5.413	5.320 5.423	5.331 5.433	5.341 5.443	600 610 620	1300 1310 1220	13.280	13.292	13.305	13.317	13.329	13.341	13.232 13.353	13.365	13.377	13.390	13.402	1310
620 630	5.443 5.546	5.454 5.557	5.464 5.567	5.474 5.577	5.485 5.588	5.495 5.598	5.505 5.608	5.515 5.618	5.526 5.629	5.536 5.639	5.546 5.649	620 630	1320 1330	13.523	13.535	13.547	13.559	13.572	13.584	13.474 13.596	13.608	13.620	13.632	13.644	1330
640 °С	5.649 0	5.660 1	5.670 2	5.680 3	5.691 4	5.701 5	5.712 6	5.722 7	5.732 8	5.743 9	5.753 10	640 °С	1340 °C	13.644 0	13.657 1	13.669 2	13.681 3	13.693 4	13.705 5	13.717 6	13.729 7	13.742 8	13.754 9	13.766 10	1340 ℃
5	-		-	-		-	-		-	-		-		-		-	-		~	-		-	-		-

	GRADE:	Type "S" Thern	nocouple Reference Tables °C
TEMPERATURE IN DEGREES °C REFERENCE JUNCTION AT 0°C Thermoclocupie Grade: Thermoclocupie Grade: 32 Limits OF EKROR Thermoclocupie Grade: 32		N.I.S.T	T. Monograph 175 Revised to ITS-90
REPERSINCE JUNCI IION AT OCC 0 to 750°C 0 to 200°C 2.2°C or 0.75% 1.1°C or 0.4% T 0 1 2 3 4 5 6 7 8 9 10 °C °C 0 1.1°C or 0.4% 1306 13867 13899 13191 1324 13365 13847 13896 13896 13896 13897 13896 13896 13896 13897 13896 13896 13896 13896 13896 13896 13896 13896 13897 13896 13897 13896 13896 13897 13896 13896 13896 13896 13897 13896 13896 13897 13896 13897 13896 13897 13896 13897 13896 13897 13897 13897 13897 13897 13897 13897 13897 13897 13897 13897 13897 13897 13897 <td< th=""><th>TEMPERATURE IN DEGREES °C</th><th>Thermocouple Grade: Extension</th><th>on Grade: (Whichever is Greater)</th></td<>	TEMPERATURE IN DEGREES °C	Thermocouple Grade: Extension	on Grade: (Whichever is Greater)
$^{\circ}$ C 0 1 2 3 4 5 6 7 8 9 10 $^{\circ}$ C $^{\circ}$ C 0 1 2 3 4 5 6 7 8 9 10 $^{\circ}$ C 1360 1387 1389 1489 1425 1425 1425 1428 1425 1428 1439 1439 1439 1439 1439 1439 1439 1439 1425 1428 1438 1439 1425 1428 1438 1439 1425 1428 1438 1436 1438 1436	REFERENCE JUNCTION AT 0°C		
1360 13.87 13.989 13.911 13.924 13.936 13.948 13.960 14.005 17.013 17.037 17.047 17.045 17.037 17.045 17.037 17.045 17.045 17.045 17.045 17.045 17.045 17.045 17.045 17.045 17.045 17.057 17.58 17.507 17.58 17.507 17.585 17.667 17.645 17.657 17.587 17.64 17.657 17.68 17.677 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 17.587 <t< th=""><th>°C 0 1 2 3 4</th><th>5 6 7 8 9 10 °C</th><th>°C 0 1 2 3 4 5 6 7 8 9 10 °C</th></t<>	°C 0 1 2 3 4	5 6 7 8 9 10 °C	°C 0 1 2 3 4 5 6 7 8 9 10 °C
	C 0 1 2 3 4 1350 13.766 13.778 13.790 13.802 13.814 13 1360 13.876 13.778 13.990 13.802 13.814 13 1360 13.887 13.899 13.911 13.224 13.936 13 1370 14.009 14.021 14.035 14.045 14.057 14 1380 14.130 14.142 14.154 14.166 14.178 14 1390 14.251 14.263 14.276 14.288 14.300 14 1400 14.373 14.385 14.397 14.409 14.421 14 1410 14.494 14.506 14.518 14.506 14.773 14.785 14 1420 14.615 14.627 14.639 14.651 14.664 14 1420 14.615 14.627 14.659 14.615 14.664 14 1440 14.857 14.869 <th>0 to 750°C 0 tc 5 6 7 8 9 10 °C 8266 13.839 13.851 13.863 13.875 13.887 1350 948 13.960 13.972 13.984 13.996 14.009 1360 1069 14.081 14.094 14.106 14.118 14.130 1370 1.191 14.203 14.215 14.227 14.239 14.251 1380 3.121 14.324 14.351 14.457 14.470 14.482 14.491 1400 1.432 14.571 14.591 14.603 14.615 1410 1.554 14.567 14.591 14.603 14.615 1410 1.554 14.567 14.591 15.087 15.098 15.091 15.091 1.504 15.507 15.508 15.079 15.081 15.999 14.00 1.518 15.916 15.208 15.208 15.208 <td< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></td<></th>	0 to 750°C 0 tc 5 6 7 8 9 10 °C 8266 13.839 13.851 13.863 13.875 13.887 1350 948 13.960 13.972 13.984 13.996 14.009 1360 1069 14.081 14.094 14.106 14.118 14.130 1370 1.191 14.203 14.215 14.227 14.239 14.251 1380 3.121 14.324 14.351 14.457 14.470 14.482 14.491 1400 1.432 14.571 14.591 14.603 14.615 1410 1.554 14.567 14.591 14.603 14.615 1410 1.554 14.567 14.591 15.087 15.098 15.091 15.091 1.504 15.507 15.508 15.079 15.081 15.999 14.00 1.518 15.916 15.208 15.208 15.208 <td< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TYPE "S" THERMOCOUPLE REFERENCE TABLES °F N.I.S.T. Monograph 175 Revised to ITS-90

GRADE: PLATINUM-10%

TECHN	OLOGIES, INC.			MAN					-	raph 1	75 Re	vised	to ITS							RHO	DIUN	NVS	. PL/	TINU	JM
		Т		couple	Grade		Ext	GRADE	Grade					Vhiche	301 1	NUN	er)			TEM	PERAT	URE I	N DEG	REES '	۶F
			32 0		2642°F 450°C		32 0	to to	300° 150°		1.5°C		andard or C	: .25%	0.	6°C	Specia or	al: 0.1%	5			e jun			
				Thermo	pelectri	c Volta	ge in M	illivolts									Thermo	oelectri	c Volta	ge in M	illivolts				
°F	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°F	°F	0	1	2	3	4	5	6	7	8	9 2 5 1 2	10 2517	°F
													600 610	2.466 2.517	2.471 2.522	2.476 2.527	2.481 2.532	2.486 2.537	2.491 2.543	2.496 2.548	2.502 2.553	2.507 2.558	2.512 2.563	2.517 2.568	600 610
													620 630	2.568 2.620	2.574 2.625	2.579 2.630	2.584 2.635	2.589 2.641	2.594 2.646	2.599 2.651	2.604 2.656	2.610 2.661	2.615 2.666	2.620 2.672	620 630
-50	0.010	0.015	-0.236				-0.227	-0.224		-0.220	-0.218	-50	640	2.672	2.677	2.682	2.687	2.692	2.697	2.703	2.708	2.713	2.718	2.723	640
-40 -30	-0.218 -0.194	-0.215 -0.192	-0.213 -0.190	-0.211 -0.187	-0.208 -0.185	-0.206 -0.182	-0.204 -0.180	-0.201 -0.178	-0.199 -0.175	-0.197 -0.173	-0.194 -0.170	-40 -30	650 660	2.723 2.775	2.729 2.781	2.734 2.786	2.739 2.791	2.744 2.796	2.749 2.801	2.755 2.807	2.760 2.812	2.765 2.817	2.770 2.822	2.775 2.827	650 660
-20 -10	-0.170 -0.145	-0.168 -0.142	-0.165 -0.140	-0.163 -0.137	-0.160 -0.135	-0.158 -0.132	-0.155 -0.129	-0.153 -0.127	-0.150 -0.124	-0.148 -0.122	-0.145 -0.119	-20 -10	670 680	2.827 2.880	2.833 2.885	2.838 2.890	2.843 2.895	2.848 2.901	2.854 2.906	2.859 2.911	2.864 2.916	2.869 2.922	2.874 2.927	2.880 2.932	670 680
0	-0.119	-0.116	-0.114	-0.111	-0.108	-0.106	-0.103	-0.100	-0.097	-0.095	-0.092	0	690	2.932	2.937	2.943	2.948	2.953	2.958	2.964	2.969	2.974	2.979	2.985	690
0 10	-0.092 -0.064	-0.089 -0.061	-0.086 -0.058	-0.084 -0.056	-0.081 -0.053	-0.078 -0.050	-0.075 -0.047	-0.073 -0.044	-0.070 -0.041	-0.067 -0.038	-0.064 -0.035	0 10	700 710	2.985 3.037	2.990 3.042	2.995 3.048	3.000 3.053	3.006 3.058	3.011 3.063	3.016 3.069	3.021 3.074	3.027 3.079	3.032 3.085	3.037 3.090	700 710
20 30	-0.035 -0.006	-0.033 -0.003	-0.030 0.000	-0.027 0.003	-0.024 0.006	-0.021 0.009	-0.018 0.012	-0.015 0.015	-0.012 0.018	-0.009 0.021	-0.006 0.024	20 30	720 730	3.090 3.143	3.095 3.148	3.100 3.153	3.106 3.159	3.111 3.164	3.116 3.169	3.122 3.174	3.127 3.180	3.132 3.185	3.137 3.190	3.143 3.196	720 730
40 50	0.024 0.055	0.027 0.058	0.030 0.062	0.033 0.065	0.037 0.068	0.040 0.071	0.043 0.074	0.046 0.077	0.049 0.081	0.052 0.084	0.055 0.087	40 50	740 750	3.196 3.249	3.201 3.254	3.206 3.259	3.212 3.265	3.217 3.270	3.222 3.275	3.227 3.281	3.233 3.286	3.238 3.291	3.243 3.297	3.249 3.302	740 750
60	0.087	0.090	0.093	0.097	0.100	0.103	0.106	0.110	0.113	0.116	0.119	60	760	3.302	3.307	3.313	3.318	3.323	3.329	3.334	3.339	3.345	3.350	3.355	760
70 80	0.119 0.153	0.123 0.156	0.126 0.159	0.129 0.163	0.133 0.166	0.136 0.169	0.139 0.173	0.143 0.176	0.146 0.180	0.149 0.183	0.153 0.186	70 80	770 780	3.355 3.409	3.361 3.414	3.366 3.419	3.371 3.425	3.377 3.430	3.382 3.435	3.387 3.441	3.393 3.446	3.398 3.451	3.403 3.457	3.409 3.462	770 780
90 100	0.186 0.221	0.190 0.224	0.193 0.228	0.197 0.231	0.200 0.235	0.204 0.238	0.207 0.242	0.210 0.245	0.214 0.249	0.217 0.252	0.221 0.256	90 100	790 800	3.462 3.516	3.468 3.521	3.473 3.527	3.478 3.532	3.484 3.537	3.489 3.543	3.494 3.548	3.500 3.553	3.505 3.559	3.510 3.564	3.516 3.570	790 800
110 120	0.256	0.260	0.263	0.267	0.270 0.306	0.274 0.310	0.277 0.313	0.281 0.317	0.285	0.288	0.292	110 120	810 820	3.570 3.623	3.575 3.629	3.580 3.634	3.586 3.640	3.591 3.645	3.596 3.650	3.602 3.656	3.607 3.661	3.613 3.667	3.618 3.672	3.623 3.677	810 820
130	0.328	0.332	0.335	0.339	0.343	0.346	0.350	0.354	0.357	0.361	0.365	130	830	3.677	3.683	3.688	3.694	3.699	3.704	3.710	3.715	3.721	3.726	3.731	830
140 150	0.365 0.402	0.369 0.406	0.372 0.410	0.376 0.414	0.380 0.417	0.384 0.421	0.387 0.425	0.391 0.429	0.395 0.433	0.399 0.436	0.402 0.440	140 150	840 850	3.731 3.786	3.737 3.791	3.742 3.796	3.748 3.802	3.753 3.807	3.758 3.813	3.764 3.818	3.769 3.823	3.775 3.829	3.780 3.834	3.786 3.840	840 850
160 170	0.440 0.479	0.444 0.483	0.448 0.487	0.452 0.490	0.456 0.494	0.459 0.498	0.463 0.502	0.467 0.506	0.471 0.510	0.475 0.514	0.479 0.518	160 170	860 870	3.840 3.894	3.845 3.900	3.851 3.905	3.856 3.910	3.862 3.916	3.867 3.921	3.872 3.927	3.878 3.932	3.883 3.938	3.889 3.943	3.894 3.949	860 870
180 190	0.518 0.557	0.522 0.561	0.526	0.530 0.569	0.534 0.573	0.538 0.577	0.541 0.581	0.545 0.585	0.549 0.589	0.553 0.593	0.557 0.597	180 190	880 890	3.949 4.003	3.954 4.009	3.959 4.014	3.965 4.020	3.970 4.025	3.976 4.030	3.981 4.036	3.987 4.041	3.992 4.047	3.998 4.052	4.003 4.058	880 890
200	0.597	0.601	0.605	0.609	0.613	0.617	0.622	0.626	0.630	0.634	0.638	200	900	4.058	4.063	4.069	4.074	4.080	4.085	4.091	4.096	4.102	4.107	4.113	900
210 220	0.638 0.679	0.642 0.683	0.646 0.687	0.650 0.691	0.654 0.695	0.658 0.699	0.662 0.703	0.666 0.708	0.670 0.712	0.675 0.716	0.679 0.720	210 220	910 920	4.113 4.167	4.118 4.173	4.123 4.178	4.129 4.184	4.134 4.189	4.140 4.195	4.145 4.200	4.151 4.206	4.156 4.211	4.162 4.217	4.167 4.222	910 920
230 240	0.720 0.762	0.724 0.766	0.728 0.770	0.732 0.774	0.737 0.779	0.741 0.783	0.745 0.787	0.749 0.791	0.753 0.795	0.758 0.800	0.762 0.804	230 240	930 940	4.222 4.277	4.228 4.283	4.233 4.288	4.239 4.294	4.244 4.299	4.250 4.305	4.255 4.310	4.261 4.316	4.266 4.321	4.272 4.327	4.277 4.332	930 940
250	0.804	0.808	0.812	0.817	0.821	0.825	0.829	0.834	0.838	0.842	0.847	250	950	4.332	4.338	4.343	4.349	4.355	4.360	4.366	4.371	4.377	4.382	4.388	950
260 270	0.847 0.889	0.851 0.894	0.855 0.898	0.859 0.902	0.864 0.907	0.868 0.911	0.872 0.915	0.877 0.920	0.881 0.924	0.885 0.928	0.889 0.933	260 270	960 970	4.388 4.443	4.393 4.449	4.399 4.454	4.404 4.460	4.410 4.465	4.415 4.471	4.421 4.476	4.426 4.482	4.432 4.487	4.437 4.493	4.443 4.498	960 970
280 290	0.933 0.977	0.937 0.981	0.942 0.985	0.946 0.990	0.950 0.994	0.955 0.998	0.959 1.003	0.963 1.007	0.968 1.012	0.972 1.016	0.977 1.021	280 290	980 990	4.498 4.554	4.504 4.559	4.510 4.565	4.515 4.571	4.521 4.576	4.526 4.582	4.532 4.587	4.537 4.593	4.543 4.598	4.548 4.604	4.554 4.610	980 990
300 310	1.021 1.065	1.025 1.069	1.029 1.074	1.034 1.078	1.038 1.083	1.043 1.087	1.047 1.092	1.052 1.096	1.056 1.101	1.061 1.105	1.065 1.110	300 310	1000 1010	4.610 4.665	4.615 4.671	4.621 4.676	4.626 4.682	4.632 4.688	4.637 4.693	4.643 4.699	4.648 4.704	4.654 4.710	4.660 4.715	4.665 4.721	1000 1010
320 330	1.110	1.114 1.159	1.119	1.123	1.128 1.173	1.132	1.137	1.141 1.186	1.146 1.191	1.150 1.196	1.155	320 330	1010 1020 1030	4.721	4.727	4.732 4.788	4.738 4.794	4.743 4.799	4.749 4.805	4.755 4.810	4.760 4.816	4.766	4.771 4.827	4.777	1010 1020 1030
340	1.200	1.205	1.209	1.214	1.218	1.223	1.227	1.232	1.237	1.241	1.246	340	1030	4.833	4.782	4.788	4.754	4.755	4.861	4.866	4.872	4.878	4.883	4.889	1030
350 360	1.246 1.292	1.250 1.296	1.255 1.301	1.260 1.306	1.264 1.310	1.269 1.315	1.273 1.319	1.278 1.324	1.283 1.329	1.287 1.333	1.292 1.338	350 360	1050 1060	4.889 4.945	4.895 4.951	4.900 4.956	4.906 4.962	4.911 4.968	4.917 4.973	4.923 4.979	4.928 4.984	4.934 4.990	4.939 4.996	4.945 5.001	1050 1060
370 380	1.338 1.385	1.343 1.389	1.347 1.394	1.352 1.399	1.357 1.403	1.361 1.408	1.366 1.413		1.375	1.380 1.427	1.385 1.431	370 380	1070 1080	5.001 5.058	5.007 5.063	5.013 5.069	5.018 5.075	5.024 5.080	5.030 5.086	5.035 5.092	5.041 5.097	5.046 5.103	5.052 5.109	5.058 5.114	1070 1080
390	1.431	1.436	1.441	1.445	1.450	1.455	1.460	1.464	1.469	1.474	1.478	390	1090	5.114	5.120	5.125	5.131	5.137	5.142	5.148	5.154	5.159	5.165	5.171	1090
400 410	1.478 1.526	1.483 1.531	1.488 1.535	1.493 1.540	1.497 1.545	1.502 1.550	1.507 1.554	1.512 1.559	1.516 1.564	1.521 1.569	1.526 1.573	400 410	1100 1110	5.171 5.227	5.176 5.233	5.182 5.239	5.188 5.244	5.193 5.250	5.199 5.256	5.205 5.261	5.210 5.267	5.216 5.273	5.222 5.278	5.284	1100 1110
420 430	1.573 1.621	1.578 1.626	1.583 1.631	1.588 1.636	1.592 1.640	1.597 1.645	1.602 1.650	1.607 1.655	1.612 1.660	1.616 1.664	1.621 1.669	420 430	1120 1130	5.284 5.341	5.290 5.347	5.295 5.352	5.301 5.358	5.307 5.364	5.312 5.369	5.318 5.375	5.324 5.381	5.330 5.386	5.335 5.392	5.341 5.398	1120 1130
440	1.669	1.674		1.684	1.689	1.693	1.698	1.703		1.713		440	1140	5.398		5.409	5.415	5.421	5.426	5.432	5.438	5.443	5.449	5.455	
450 460	1.718 1.766	1.771	1.727 1.776	1.732 1.781	1.737 1.786	1.742 1.790	1.747 1.795	1.752 1.800	1.756 1.805	1.761 1.810	1.766 1.815	450 460	1150 1160	5.455 5.512	5.461 5.518	5.466 5.523	5.472 5.529	5.478 5.535	5.483 5.541	5.489 5.546	5.495 5.552	5.501 5.558	5.506 5.563	5.512 5.569	1160
470 480	1.815 1.864	1.820 1.869	1.825 1.874	1.829 1.878	1.834 1.883	1.839 1.888	1.844 1.893	1.849 1.898	1.854 1.903	1.859 1.908	1.864 1.913	470 480	1170 1180	5.569 5.627	5.575 5.632	5.581 5.638	5.586 5.644	5.592 5.649	5.598 5.655	5.604 5.661	5.609 5.667	5.615 5.672	5.621 5.678	5.627 5.684	
490 500	1.913 1.962	1.918 1.967	1.923 1.972	1.928 1.977	1.933 1.982	1.938 1.987	1.942 1.992	1.947 1.997	1.952 2.002	1.957 2.007	1.962 2.012	490 500	1190 1200	5.684 5.741	5.690 5.747	5.695 5.753	5.701 5.759	5.707 5.764	5.713 5.770	5.718 5.776	5.724 5.782	5.730 5.788	5.736 5.793	5.741 5.799	1190 1200
510	2.012	2.017	2.022	2.027	2.032	2.037	2.042	2.047	2.052	2.057	2.062	510	1210	5.799	5.805	5.811	5.816	5.822	5.828	5.834	5.839	5.845	5.851	5.857	1210
520 530	2.062 2.111	2.067 2.116	2.072	2.076	2.081 2.131	2.086	2.091 2.141	2.096 2.147	2.101 2.152	2.106 2.157	2.111 2.162	520 530	1220 1230	5.857 5.915	5.863 5.920	5.868 5.926	5.874 5.932	5.880 5.938	5.886 5.944	5.891 5.949	5.897 5.955	5.903 5.961	5.909 5.967	5.972	
540 550	2.162 2.212		2.172 2.222	2.177 2.227	2.182 2.232	2.187 2.237	2.192 2.242	2.197 2.247	2.202 2.252	2.207 2.257	2.212 2.262	540 550	1240 1250	5.972 6.030	5.978 6.036	5.984 6.042	5.990 6.048	5.996 6.054	6.001 6.060	6.007 6.065	6.013 6.071	6.019 6.077	6.025 6.083	6.030 6.089	1240 1250
560 570	2.262	2.267 2.318	2.272	2.277	2.283	2.288	2.293 2.343	2.298 2.348	2.303 2.354	2.308 2.359	2.313 2.364	560 570	1260 1260 1270	6.089 6.147	6.094 6.153	6.100 6.158	6.106 6.164	6.112 6.170	6.118 6.176	6.124 6.182	6.129 6.188	6.135 6.193	6.141 6.199	6.147	1260 1260 1270
580	2.364	2.369	2.374	2.379	2.384	2.389	2.394	2.399	2.404	2.410	2.415	580	1280	6.205	6.211	6.217	6.223	6.228	6.234	6.240	6.246	6.252	6.258	6.264	1280
590 °F	2.415 0	2.420 1	2.425 2	2.430 3	2.435 4	2.440 5	2.445 6	2.450 7	2.455 8	2.461 9	2.466 10	590 °F	1290 °F	6.264 0	6.269 1	6.275 2	6.281 3	6.287 4	6.293 5	6.299 6	6.305 7	6.310 8	6.316 9	6.322 10	1290 °F
													1												

GRADE:	TYPE "S" TH	IERMOCOUPL	e Reference Tables ° F
PLATINUM - 10% Rhodium VS. Platinum		N.I.S.T. Monograph 1	175 Revised to ITS-90
TEMPERATURE IN DEGREES °F	MAXIMUM TEMPEI Thermocouple Grade: 32 to 2642°F	RATURE GRADE Extension Grade: 32 to 300°F	LIMITS OF ERROR (Whichever is Greater) Standard: Special:
REFERENCE JUNCTION AT 32°F	0 to 1450°C	0 to 150°C	1.5°C or 0.25% 0.6°C or 0.1%
Thermoelectric°F01234	Voltage in Millivolts56789	10 °F °F 0	Thermoelectric Voltage in Millivolts 1 2 3 4 5 6 7 8 9 10 °F
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 6.439 1310 2010 10.743 2 6.498 1320 2020 10.809 6.557 1330 2030 10.875 0 6.616 1340 2040 10.941 9 6.675 1350 2050 11.007 9 6.735 1360 2060 11.073	$ 10.750 10.757 10.763 10.770 10.776 10.783 10.789 10.796 10.803 10.809 2010 \\ 10.816 10.822 10.829 10.836 10.842 10.849 10.855 10.862 10.868 10.875 2020 \\ 10.882 10.888 10.895 10.901 10.908 10.915 10.921 10.928 10.934 10.941 2030 \\ 10.948 10.964 10.967 10.974 10.981 10.987 10.994 11.000 11.007 2040 \\ 11.014 11.020 11.027 11.033 11.040 11.047 11.053 11.060 11.066 11.073 2050 \\ 11.080 11.086 11.093 11.099 11.106 11.113 11.119 11.126 11.132 11.139 2060 \\ $
1380 6.794 6.800 6.806 6.812 6.818 1390 6.853 6.859 6.865 6.811 6.877 1400 6.913 6.919 6.925 6.931 6.937 1410 6.973 6.979 6.985 6.991 6.997 1420 7.032 7.038 7.044 7.050 7.056 1430 7.092 7.098 7.104 7.110 7.116	6.824 6.830 6.836 6.842 6.847 6.883 6.898 6.895 6.901 6.907 6.943 6.949 6.955 6.961 6.967 7.003 7.008 7.014 7.020 7.086 7.062 7.068 7.074 7.080 7.046 7.122 7.128 7.134 7.140 7.146	7 6.853 1380 2080 11.205 7 6.913 1390 2090 11.272 7 6.973 1400 2100 11.338 6 7.032 1410 2110 11.404 7 7.052 1420 2120 11.471 6 7.152 1430 2130 11.537	$ \begin{array}{ccccccccccccccccccccccccccccccc$
1450 7.212 7.218 7.224 7.230 7.236 1460 7.273 7.279 7.285 7.291 7.297 1470 7.333 7.339 7.345 7.351 7.357 1480 7.393 7.399 7.405 7.411 7.418 1490 7.454 7.460 7.466 7.472 7.478	7.182 7.188 7.194 7.200 7.206 7.242 7.249 7.255 7.261 7.267 7.303 7.309 7.315 7.321 7.327 7.363 7.369 7.375 7.381 7.387 7.424 7.430 7.436 7.442 7.448 7.484 7.490 7.496 7.502 7.502 7.545 7.551 7.557 7.563 7.569	7 7.273 1450 2150 11.670 7 7.333 1460 2160 11.737 7 7.393 1470 2170 11.804 8 7.454 1480 2180 11.870 3 7.514 1490 2190 11.937	11.744 11.750 11.757 11.764 11.770 11.777 11.784 11.790 11.797 11.804 2160 11.810 11.817 11.824 11.830 11.837 11.844 11.850 11.857 11.864 11.870 2170 11.877 11.884 11.890 11.897 11.904 11.910 11.917 11.924 11.931 11.937 2180 11.944 11.951 11.957 11.964 11.971 11.984 11.991 11.997 12.004 2190
1510 7.575 7.581 7.587 7.593 7.600 1520 7.636 7.642 7.648 7.654 7.660 1530 7.697 7.703 7.709 7.715 7.721 1540 7.758 7.764 7.770 7.776 7.783 1550 7.819 7.825 7.832 7.838 7.844	7.606 7.612 7.618 7.624 7.630 7.667 7.673 7.679 7.685 7.691 7.728 7.734 7.140 7.746 7.752 7.789 7.795 7.801 7.807 7.813 7.850 7.856 7.862 7.863 7.813 7.89 7.795 7.801 7.806 7.874 7.810 7.826 7.862 7.863 7.837 7.911 7.917 7.923 7.930 7.930) 7.636 1510 2210 12.071) 7.697 1520 2220 12.138 2 7.758 1530 2230 12.205 3 7.819 1540 2240 12.272 I 7.881 1550 2250 12.339	12.078 12.084 12.091 12.098 12.104 12.111 12.118 12.124 12.131 12.138 2210 12.145 12.151 12.158 12.165 12.171 12.178 12.185 12.191 12.198 12.205 2220 12.211 12.218 12.225 12.232 12.238 12.245 12.258 12.265 12.272 2230 12.278 12.285 12.292 12.299 12.305 12.312 12.319 12.325 12.332 12.339 2240 12.346 12.352 12.359 12.366 12.372 12.379 12.386 12.392 12.399 12.406 2550
1570 7.942 7.948 7.954 7.960 7.966 1580 8.003 8.010 8.016 8.022 8.028 1590 8.065 8.071 8.077 8.083 8.090 1600 8.127 8.133 8.139 8.145 8.151 1610 8.189 8.195 8.201 8.207 8.213	7.973 7.979 7.985 7.991 7.997 8.034 8.040 8.047 8.053 8.059 8.096 8.102 8.108 8.114 8.121 8.158 8.164 8.170 8.176 8.182 8.219 8.226 8.232 8.238 8.244	8.003 1570 2270 12.473 8.065 1580 2280 12.540 8.127 1590 2290 12.607 2 8.189 1600 2300 12.675 8.250 1610 2310 12.742	12.480 12.486 12.493 12.500 12.507 12.513 12.520 12.527 12.533 12.540 22.70 12.547 12.554 12.560 12.567 12.574 12.580 12.587 12.594 12.601 12.607 2280 12.614 12.621 12.627 12.634 12.641 12.648 12.654 12.668 12.675 2290 12.681 12.688 12.695 12.701 12.708 12.715 12.722 12.728 12.735 12.742 2300 12.748 12.755 12.762 12.769 12.775 12.782 12.789 12.796 12.802 12.809 2310
1630 8.312 8.319 8.325 8.331 8.337 1640 8.375 8.381 8.387 8.393 8.399 1650 8.437 8.443 8.449 8.455 8.462 1660 8.499 8.505 8.512 8.518 8.524	8.281 8.288 8.294 8.300 8.366 8.343 8.350 8.356 8.362 8.368 8.406 8.412 8.418 8.424 8.431 8.468 8.474 8.480 8.487 8.493 8.530 8.537 8.543 8.549 8.559 8.593 8.599 8.605 8.612 8.618	8 8.375 1630 2330 12.876 1 8.437 1640 2340 12.944 3 8.499 1650 2350 13.011 5 8.562 1660 2360 13.078	12.883 12.890 12.896 12.903 12.910 12.917 12.923 12.930 12.937 12.944 2330 12.950 12.957 12.964 12.971 12.977 12.984 12.991 12.997 13.004 13.011 2340 13.018 13.024 13.031 13.038 13.045 13.051 13.058 13.065 13.072 13.078 2350 13.085 13.092 13.098 13.105 13.112 13.119 13.125 13.123 13.139 13.146 2360 13.152 13.159 13.166 13.173 13.179 13.186 13.193 13.199 13.206 13.213 2370
1690 8.687 8.693 8.699 8.706 8.712 1700 8.749 8.756 8.762 8.768 8.775 1710 8.812 8.819 8.825 8.831 8.837 1720 8.875 8.882 8.888 8.894 8.900 1730 8.938 8.945 8.951 8.957 8.964	8.655 8.662 8.668 8.674 8.660 8.718 8.724 8.731 8.737 8.743 8.781 8.793 8.800 8.806 8.844 8.850 8.856 8.863 8.869 8.907 8.913 8.919 8.926 8.932 8.970 8.976 8.983 8.989 8.995	3 8.749 1690 2390 13.280 5 8.812 1700 2400 13.348 9 8.875 1710 2410 13.415 2 8.938 1720 2420 13.483 5 9.001 1730 2430 13.550	13.287 13.294 13.301 13.307 13.314 13.321 13.328 13.334 13.341 13.348 2390 13.354 13.361 13.368 13.375 13.381 13.388 13.395 13.402 13.408 13.415 2400 13.422 13.429 13.455 13.442 13.489 13.496 13.476 13.483 2410 13.489 13.496 13.503 13.510 13.516 13.523 13.500 13.537 13.543 13.450 2420 13.489 13.496 13.507 13.516 13.523 13.500 13.557 2420 13.557 13.563 13.577 13.584 13.590 13.597 13.604 13.611 13.617 2430
1750 9.065 9.071 9.077 9.084 9.090 1760 9.128 9.134 9.141 9.147 9.153 1770 9.192 9.198 9.204 9.211 9.217 1780 9.255 9.261 9.268 9.274 9.281 1790 9.319 9.325 9.331 9.338 9.344	9.033 9.039 9.046 9.052 9.058 9.096 9.103 9.109 9.115 9.122 9.160 9.166 9.172 9.179 9.185 9.223 9.230 9.236 9.242 9.249 9.287 9.293 9.300 9.306 9.312 9.351 9.357 9.363 9.370 9.376 9.414 9.421 9.427 9.434 9.440	2 9.128 1750 2450 13.685 5 9.192 1760 2460 13.752 9 9.255 1770 2470 13.820 2 9.319 1780 2480 13.887 5 9.382 1790 2490 13.955	13.624 13.631 13.638 13.644 13.651 13.658 13.665 13.671 13.678 13.685 2440 13.692 13.698 13.705 13.712 13.719 13.725 13.732 13.739 13.746 13.752 2450 13.759 13.766 13.773 13.779 13.786 13.793 13.800 13.806 13.803 13.840 2460 13.826 13.831 13.840 13.847 13.851 13.860 13.867 13.884 13.847 13.860 13.861 13.884 13.840 13.840 13.860 13.861 13.871 13.880 13.884 13.840 13.480 13.860 13.861 13.884 13.840 13.840 13.840 13.840 13.840 13.840 13.840 13.840 13.840 13.840 13.952 2400 13.894 13.941 13.948 13.991 13.948 13.941 13.948 13.955 2480 13.961 13.968 13.975 13.982 13.984 13.945 14.022 2490 14.029 <td< td=""></td<>
1810 9.446 9.453 9.459 9.465 9.472 1820 9.510 9.517 9.523 9.529 9.536 1830 9.574 9.581 9.587 9.594 9.600 1840 9.638 9.645 9.651 9.658 9.664 1850 9.703 9.709 9.716 9.722 9.728	3.14 3.421 3.141 3.1421 3.1411 3.1421 3.1411 3.1421 3.1411 3.1421 3.14111 3.14111 3.14111 3.14111 3.14111 3.1411	I 9.510 1810 2510 14.089 3 9.574 1820 2520 14.157 2 9.638 1830 2530 14.224 5 9.703 1840 2540 14.292 9.767 1850 2550 14.359	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1870 9.831 9.838 9.844 9.851 9.857 1880 9.896 9.902 9.909 9.915 9.922 1890 9.961 9.967 9.973 9.980 9.986 1900 10.025 10.032 10.038 10.045 10.011 1910 10.090 10.097 10.103 10.110 10.116	9.864 9.870 9.877 9.883 9.889 9.928 9.935 9.941 9.948 9.954 9.939 9.999 10.006 10.012 10.019 10.058 10.064 10.071 10.077 10.084 10.123 10.129 10.136 10.142 10.145	9 9.896 1870 2570 14.494 9.961 1880 2580 14.561 9 10.025 1890 2590 14.629 4 10.090 1900 2600 14.696 9 10.155 1910 2610 14.763	$ \begin{array}{cccccccccccccccccccccccccccccc$
1920 10.155 10.162 10.168 10.175 10.181 1930 10.220 10.227 10.233 10.240 10.246 1940 10.285 10.292 10.298 10.305 10.311 1950 10.350 10.357 10.363 10.370 10.376 1960 10.416 10.422 10.429 10.435 10.445 1970 10.481 10.488 10.494 10.501 10.507 1980 10.547 10.553 10.560 10.566 10.573 1990 10.612 10.619 10.625 10.632 10.638	10.253 10.259 10.266 10.272 10.279 0.318 10.324 10.331 10.337 10.34 10.338 10.390 10.396 10.403 10.40 10.48 10.455 10.461 10.478 10.479 10.448 10.455 10.461 10.478 10.479 10.514 10.520 10.527 10.533 10.549 10.579 10.586 10.592 10.599 10.609	9 10.285 1930 2630 14.898 4 10.350 1940 2640 14.965 9 10.416 1950 2650 15.032 5 10.481 1960 2660 15.099 0 10.547 1970 2670 15.166 6 10.612 1980 2680 15.233	14.837 14.844 14.851 14.857 14.864 14.871 14.877 14.884 14.891 14.898 2620 14.904 14.911 14.918 14.925 14.931 14.938 14.945 14.951 14.958 14.955 14.955 2630 14.972 14.978 14.985 14.992 14.998 15.005 15.019 15.025 15.032 2640 15.039 15.045 15.052 15.050 15.066 15.072 15.079 15.086 15.092 15.092 2650 15.106 15.113 15.126 15.133 15.139 15.146 15.160 15.166 2660 15.173 15.186 15.193 15.207 15.271 15.232 15.232 2670 15.240 15.244 15.260 15.207 15.241 15.240 15.243 15.300 2680 15.247 15.244 15.247 15.245 15.267 15.347 15.345 15.361 15.367 2690
°F 0 1 2 3 4	5 6 7 8 9	10 °F °F 0	1 2 3 4 5 6 7 8 9 10 °F

TYPE "S" THERMOCOUPLE REFERENCE TABLES °F

GRADE:

TYPE "S" THERMOC	OUPLE REF	ERENCE TABLES °	
	onograph 175 Revised		PLATINUM -10%
TECHNOLOGIES, INC. MAXIMUM TEMPERATURE GRADE	0	LIMITS OF ERROR	RHODIUM VS. PLATINUM
Thermocouple Grade: Extension G 32 to 2642°F 32 to		(Whichever is Greater) andard: Special:	TEMPERATURE IN DEGREES °F
		or 0.25% 0.6°C or 0.1%	REFERENCE JUNCTION AT 32°F
Thermoelectric Voltage in Millivolts	0 0 10 °F	Thermoelectric Volt	5
°F 0 1 2 3 4 5 6 7 2700 15.367 15.374 15.381 15.388 15.394 15.401 15.408 15.414 15	8 9 10 °F 5.421 15.428 15.434 2700	°F 0 1 2 3 4 5 3000 17.353 17.360 17.366 17.373 17.379 17.38	
2710 15.434 15.441 15.448 15.455 15.461 15.468 15.475 15.481 15 2720 15.501 15.508 15.515 15.521 15.528 15.535 15.542 15.548 15		3010 17.418 17.425 17.431 17.438 17.444 17.45 3020 17.483 17.490 17.496 17.503 17.509 17.51	
	5.622 15.628 15.635 2730	3030 17.548 17.555 17.561 17.568 17.574 17.58	1 17.587 17.594 17.600 17.607 17.613 3030 5 17.652 17.658 17.665 17.671 17.678 3040
2750 15.702 15.709 15.715 15.722 15.729 15.735 15.742 15.749 15	5.755 15.762 15.769 2750	3050 17.678 17.684 17.691 17.697 17.704 17.71	0 17.717 17.723 17.729 17.736 17.742 3050
2760 15.769 15.775 15.782 15.789 15.795 15.802 15.809 15.815 15 2770 15.835 15.842 15.849 15.855 15.862 15.869 15.875 15.882 15	5.822 15.829 15.835 2760 5.889 15.895 15.902 2770		5 17.781 17.787 17.794 17.800 17.807 3060 9 17.845 17.852 17.858 17.864 17.871 3070
2780 15.902 15.909 15.915 15.922 15.929 15.935 15.942 15.949 15 2790 15.969 15.975 15.982 15.989 15.995 16.002 16.009 16.015 16	5.955 15.962 15.969 2780 6.022 16.029 16.035 2790	3080 17.871 17.877 17.884 17.890 17.896 17.90 3090 17.935 17.941 17.947 17.954 17.960 17.96	3 17.909 17.915 17.922 17.928 17.935 3080 6 17.973 17.979 17.985 17.992 17.998 3090
2800 16.035 16.042 16.049 16.055 16.062 16.069 16.075 16.082 16		3100 17.998 18.004 18.011 18.017 18.023 18.03 3110 18.061 18.068 18.074 18.080 18.086 18.09	
	6.221 16.228 16.235 2820	3120 18.124 18.130 18.137 18.143 18.149 18.15	5 18.162 18.168 18.174 18.180 18.187 3120
2830 16.235 16.241 16.248 16.255 16.261 16.268 16.275 16.281 16 2840 16.301 16.308 16.314 16.321 16.328 16.334 16.341 16.347 16		3130 18.187 18.193 18.199 18.205 18.211 18.21 3140 18.248 18.255 18.261 18.267 18.273 18.27	8 18.224 18.230 18.236 18.242 18.248 3130 9 18.285 18.292 18.298 18.304 18.310 3140
	6.42016.42716.43428506.48616.49316.5002860	3150 18.310 18.316 18.322 18.328 18.334 18.34 3160 18.371 18.377 18.383 18.389 18.395 18.40	
2870 16.500 16.506 16.513 16.520 16.526 16.533 16.539 16.546 16	6.553 16.559 16.566 2870 6.619 16.625 16.632 2880	3170 18.431 18.437 18.443 18.449 18.455 18.46	
2890 16.632 16.638 16.645 16.652 16.658 16.665 16.671 16.678 16	6.685 16.691 16.698 2890	3190 18.551 18.557 18.562 18.568 18.574 18.58	
	6.75116.75716.76429006.81616.82316.8292910	3200 18.609 18.615 18.621 18.627 18.633 18.63 3210 18.667 18.673 18.679 18.684 18.690	8 18.644 18.650 18.656 18.661 18.667 3200 3210
2920 16.829 16.836 16.843 16.849 16.856 16.862 16.869 16.876 16 2930 16.895 16.902 16.908 16.915 16.922 16.928 16.935 16.941 16	6.88216.88916.89529206.94816.95416.9612930	°F 0 1 2 3 4 5	6 7 8 9 10 °F
2940 16.961 16.967 16.974 16.981 16.987 16.994 17.000 17.007 17			
2950 17.026 17.033 17.040 17.046 17.053 17.059 17.066 17.072 17 2960 17.092 17.099 17.105 17.112 17.118 17.125 17.131 17.138 17	7.144 17.151 17.157 2960		
2970 17.157 17.164 17.171 17.177 17.184 17.190 17.197 17.203 17 2980 17.223 17.229 17.236 17.242 17.249 17.255 17.262 17.268 17	7.275 17.282 17.288 2980		
2990 17.288 17.295 17.301 17.308 17.314 17.321 17.327 17.334 17 °F 0 1 2 3 4 5 6 7	7.340 17.347 17.353 2990 8 9 10 °F		
	0 0 10 1		
		1	

GRADE:	Type "T"	Thermocouple	e Reference Tab	les °C
COPPER VS. COPPER-NICKEL	21	N.I.S.T. Monograph 1	75 Revised to ITS-90	TECHNOLOGIES, INC.
TEMPERATURE IN DEGREES °C	MAXIMUM TEMPERA Thermocouple Grade: -328 to 662°F	Extension Grade:	LIMITS OF ERROR (Which Standard: Special: 1.0°C or 0.75% Above 0°C	,
REFERENCE JUNCTION AT 0°C	-200 to 350°C	-60 to 100°C	1.0°C or 1.50% Below 0°C	
Thermoelectric °C -10 -9 -8 -7 -6	Voltage in Millivolts -5 -4 -3 -2 -1	0 °C 0°	Thermoelectric Volta12345	gein Millivolts 6 7 8 9 10 ℃
REFERENCE JUNCTION AT 0°C Thermoelectric °C -10 -9 -8 -7 -6 -260 -6.258 -6.256 -6.253 -6.211 - -250 -6.232 -6.223 -6.223 -6.214 - -240 -6.180 -6.167 -6.160 -6.174 -6.078 -6.0688 -230 -6.105 -6.067 -6.078 -6.0688 - -5.937 -5.962 -210 -5.888 -5.876 -5.863 -5.863 -5.863 -5.863 -200 -5.753 -5.714 -5.165 -5.369 -190 -5.603 -5.503 -5.010 -4.899 -160 -5.070 -5.030 -5.010 -4.899 -150 -4.865 -4.844 -4.822 -4.802 -4.780 -140 -4.648 -4.626 -4.604 -4.581 -4.581 -130 -4.117 -4.152 -4.127 -4.148 -3.342<	Voltage in Millivolts -5 -4 -3 -2 -1 -6.248 -6.245 -6.242 -6.239 -6.266 -6.209 -6.204 -6.198 -6.193 -6.187 -6.146 -6.138 -6.130 -6.122 -6.147 -6.159 -6.049 -6.038 -6.028 -6.017 -5.950 -5.938 -5.926 -5.914 -5.901 -5.930 -5.938 -5.926 -5.614 -5.619 -5.533 -5.809 -5.795 -5.782 -5.767 -5.620 -5.648 -5.473 -5.456 -5.650 -5.684 -5.151 -5.148 -5.129 -5.099 -5.279 -5.279 -5.167 -5.148 -5.129 -4.050 -4.051 4.426 -4.403 -4.052 -4.026 -4.000 -3.975 -3.949 -3.949 -3.949 -3.949 -3.949 -3.949 -3.148 -3.148 -3.148 -3.148 -3.148 -	0 °C °C 0 -6.232 -260 110 4.750 -6.180 -250 120 5.228 -6.105 -240 130 5.714 -6.007 -230 140 6.206 -5.753 -210 150 6.704 -5.753 -210 160 7.209 -5.439 -190 180 8.237 -5.261 180 9.02 7.53 -5.070 -170 200 9.288 -5.261 180 220 10.362 -4.468 -150 220 10.362 -4.477 130 240 11.458 -3.323 -120 250 12.013 -3.357 -100 270 31.39 -3.359 -00 200 14.283 -2.788 80 290 14.283 -2.476 -70 300 14.862 -3.359 -00 320 16.624<	I 2 3 4 5 4.798 4.845 4.893 4.941 4.988 5.277 5.325 5.373 5.422 5.470 5.635 6.812 5.861 5.910 5.959 6.255 6.305 6.355 6.404 6.454 6.756 6.805 6.956 6.957 7.60 7.301 7.417 7.463 7.760 7.301 7.361 7.412 7.463 8.497 8.812 8.865 8.917 8.970 9.023 9.341 9.395 9.448 9.050 9.059 9.417 10.452 10.580 10.634 10.417 10.452 10.580 10.634 10.417 10.452 12.801 12.351 12.630 12.647 12.418 12.439 12.431 13.96 13.253 13.310 13.366 13.423 13.96 12.431 12.439 12.439 14.451	6 7 8 9 10 °C 5.036 5.084 5.132 5.180 5.228 110 5.519 5.567 5.616 5.655 5.714 120 6.008 6.057 6.107 6.156 6.266 130 6.504 6.554 6.664 6.654 6.704 140 7.006 7.057 7.107 7.158 7.209 150 7.515 7.566 7.617 7.668 7.720 160 8.029 8.081 8.133 8.185 8.237 170 8.550 8.602 8.654 8.707 8.759 180 9.076 9.129 9.182 9.235 9.282 200 10.146 10.200 10.254 10.308 10.362 210 10.869 10.743 10.798 10.853 10.907 220 11.237 11.240 12.461 12.518 12.574 250 12.349
		131		1

Type "T" Thermocouple Reference Tables °F N.I.S.T. Monograph 175 Revised to ITS-90

GRADE: **COPPER VS.**

10000							Ν	.I.S.T. I	Nonog	raph 1	175 Re	evised	to ITS	S-90			-						NICK		
TECHN	VLUUICS, INC.	1	Thermo					GRADE		<u>.</u>		LIM		ERROR lard: S	1 C		is Grea	ater)							_
		-:	328	to	662°F		-76	to	212	°F			0.75	% Abo	ve 0°C		0.5°C	or 0	.4%					REES ° AT 32°	
		-2	200	to	350°C		-60	to	100°	°C	1.0°	C or	1.50)% Belo	ow 0°C					NELL	-NLNC		GHON	AT JZ	
°F	10	0					•	illivolts		1	0	°F	°F	0	1			oelectri	•	ge in M			0	10	°F
1	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	TF.	150	0 2.712	1 2.737	2 2.761	3 2.786	4 2.810	5 2.835	6 2.860	7 2.884	8 2.909	9 2.934	10 2.958	150
													160 170	2.958 3.207	2.983 3.232	3.008 3.257	3.033 3.282	3.058 3.307	3.082 3.333	3.107 3.358	3.132 3.383	3.157 3.408	3.182 3.433	3.207 3.459	160 170
													180	3.459	3.484	3.509	3.534	3.560	3.585	3.610	3.636	3.661	3.687	3.712	180
-450 -440	-6.254	-6 253	-6.252	-6 251	-6.250	-6.248	-6.258 -6.247	-6.257 -6.245	-6.256 -6.243	-6.255 -6.242	-6.254 -6.240	-450 -440	190 200	3.712 3.968	3.738 3.994	3.763 4.020	3.789 4.046	3.814 4.071	3.840 4.097	3.866 4.123	3.891 4.149	3.917 4.175	3.943 4.201	3.968 4.227	190 200
-430	-6.240	-6.238	-6.236	-6.234	-6.232	-6.230	-6.227	-6.225	-6.222	-6.220	-6.217	-430	210	4.227	4.253	4.279	4.305	4.331	4.357	4.383	4.409	4.435	4.461	4.487	210
-420 -410	-6.217 -6.187	-6.215 -6.184	-6.212 -6.180		-6.206 -6.173	-6.203 -6.170	-6.200 -6.166		-6.194 -6.158	-6.191 -6.154	-6.187 -6.150	-420 -410	220 230	4.487 4.750	4.513 4.776	4.540 4.803	4.566 4.829	4.592 4.856	4.618 4.882	4.645 4.909	4.671 4.935	4.697 4.962	4.724 4.988	4.750 5.015	220 230
-400 -390	-6.150 -6.105	-6.146 -6.100	-6.141 -6.095	-6.137 -6.090	-6.133 -6.085	-6.128 -6.080	-6.124 -6.075	-6.119 -6.069	-6.115 -6.064	-6.110 -6.059	-6.105 -6.053	-400 -390	240 250	5.015 5.282	5.042 5.309	5.068 5.336	5.095 5.363	5.122 5.389	5.148 5.416	5.175 5.443	5.202 5.470	5.228 5.497	5.255 5.524	5.282 5.551	240 250
-380	-6.053	-6.047	-6.042	-6.036	-6.030	-6.025	-6.019	-6.013	-6.007	-6.001	-5.994	-380	260	5.551	5.578	5.605	5.632	5.660	5.687	5.714	5.741	5.768	5.795	5.823	260
-370 -360	-5.994 -5.930	-5.988 -5.923	-5.982 -5.916		-5.969 -5.902	-5.963 -5.896	-5.956 -5.888	-5.950 -5.881	-5.943 -5.874	-5.937 -5.867	-5.930 -5.860	-370 -360	270 280	5.823 6.096	5.850 6.123	5.877 6.151	5.904 6.178	5.932 6.206	5.959 6.233	5.986 6.261	6.014 6.288	6.041 6.316	6.068 6.343	6.096 6.371	270 280
-350 -340	-5.860 -5.785	-5.853	-5.845 -5.769		-5.830	-5.823 -5.745	-5.815 -5.737	-5.808 -5.729	-5.800 -5.721	-5.792 -5.713	-5.785 -5.705	-350 -340	290 300	6.371 6.648	6.399 6.676	6.426 6.704	6.454 6.732	6.482 6.760	6.510 6.788	6.537 6.816	6.565 6.844	6.593 6.872	6.621 6.900	6.648 6.928	290 300
-330	-5.705	-5.697	-5.688	-5.680	-5.672	-5.663	-5.655	-5.646	-5.638	-5.629	-5.620	-330	310	6.928	6.956	6.984	7.012	7.040	7.068	7.096	7.124	7.152	7.181	7.209	310
-320 -310	-5.620 -5.532	-5.523	-5.603 -5.513	-5.504	-5.585 -5.495	-5.577 -5.486	-5.568 -5.476	-5.559 -5.467		-5.541 -5.448	-5.532 -5.439	-320 -310	320 330	7.209 7.492	7.237 7.520	7.265 7.549	7.294 7.577	7.322 7.606	7.350 7.634	7.378 7.663	7.407 7.691	7.435 7.720	7.463 7.748	7.492 7.777	320 330
-300 -290	-5.439 -5.341		-5.420 -5.322			-5.391	-5.381 -5.281	-5.371 -5.271		-5.351 -5.250	-5.341	-300 -290	340	7.777 8.064	7.805 8.092	7.834 9.121	7.863	7.891 8 170	7.920 8.208	7.949 8.237	7.977 8.266	8.006 8.294	8.035 8.323	8.064 8.352	340 350
-280	-5.240	-5.230	-5.219	-5.209	-5.301 -5.198	-5.291 -5.188	-5.177	-5.167	-5.261 -5.156	-5.145	-5.240 -5.135	-280	350 360	8.352	8.381	8.121 8.410	8.150 8.439	8.179 8.468	8.497	8.526	8.555	8.585	8.614	8.643	360
-270 -260	-5.135 -5.025		-5.113 -5.003	-5.102 -4.992	-5.091 -4.980	-5.081 -4.969	-5.070 -4.958		-5.048 -4.935	-5.036 -4.923	-5.025 -4.912	-270 -260	370 380	8.643 8.935	8.672 8.964	8.701 8.994	8.730 9.023	8.759 9.052	8.789 9.082	8.818 9.111	8.847 9.141	8.876 9.170	8.906 9.200	8.935 9.229	370 380
-250	-4.912 -4.794		-4.889			-4.854	-4.842	-4.830		-4.806 -4.685	-4.794 -4.673	-250 -240	390	9.229 9.525	9.259 9.555	9.288 9.584	9.318	9.347	9.377 9.673	9.406 9.703	9.436 9.733	9.466	9.495 9.793	9.525 9.822	390 400
-240 -230	-4.673	-4.661	-4.771 -4.648	-4.636	-4.624	-4.734 -4.611	-4.722 -4.599	-4.586	-4.698 -4.573	-4.561	-4.548	-230	400 410	9.822	9.852	9.882	9.614 9.912	9.644 9.942	9.972	10.002	10.032		10.092	10.122	410
-220 -210	-4.548 -4.419	-4.535 -4.406	-4.523 -4.393		-4.497 -4.366	-4.484 -4.353	-4.471 -4.340		-4.445 -4.313	-4.432 -4.300	-4.419 -4.286	-220 -210	420 430	10.122 10.423	10.152 10.453				10.272 10.574		10.332 10.634		10.392 10.695	10.423 10.725	420 430
-200	-4.286	-4.273				-4.218	-4.205	-4.191		-4.163	-4.149	-200	440							10.907			10.999		440
-190 -180	-4.149 -4.009	-3.995	-4.122 -3.980	-3.966		-4.080 -3.937	-4.066 -3.923		-3.894	-4.023 -3.879	-4.009 -3.865	-190 -180	450	11.335	11.366	11.396	11.427	11.458	11.489	11.213 11.519	11.550	11.581	11.612	11.643	450 460
-170 -160	-3.865 -3.717	-3.850 -3.702	-3.836 -3.687		-3.806 -3.657	-3.791 -3.642	-3.777 -3.626	-3.762 -3.611	-3.747 -3.596	-3.732 -3.581	-3.717 -3.565	-170 -160	470 480							11.828 12.138			11.920 12.231		470 480
-150	-3.565	-3.550			-3.504		-3.473	-3.457			-3.410		490							12.449					490
-140 -130	-3.410 -3.251	-3.394 -3.235	-3.379 -3.219	-3.203	-3.347 -3.187	-3.331 -3.171	-3.315 -3.154	-3.138	-3.283 -3.122	-3.267 -3.105	-3.251 -3.089	-140 -130	500 510	12.887	12.919	12.950	12.982	13.013	13.045	12.762 13.076	13.108	13.139	13.171	13.202	500 510
-120 -110	-3.089 -2.923	-3.072 -2.906	-3.056 -2.889		-3.023 -2.856	-3.006 -2.839	-2.990 -2.822		-2.956 -2.788	-2.940 -2.771	-2.923 -2.754	-120 -110	520 530							13.392 13.709					520 530
-100 -90	-2.754 -2.581	-2.737 -2.564	-2.719 -2.546		-2.685 -2.511	-2.668 -2.493	-2.651 -2.476		-2.616 -2.440	-2.598 -2.423	-2.581 -2.405	-100 -90	540 550							14.027 14.347					540 550
-80	-2.405	-2.387	-2.369	-2.351	-2.334	-2.316	-2.298	-2.280	-2.262	-2.244	-2.225	-80	560	14.476	14.508	14.540	14.572	14.604	14.636	14.669	14.701	14.733	14.765	14.797	560
-70 -60	-2.225 -2.043	-2.207 -2.024	-2.189 -2.006	-1.987		-2.134 -1.950	-2.116 -1.931	-1.913		-2.061 -1.875	-2.043 -1.857	-70 -60	570 580	15.121	15.153	15.185	14.894 15.218	15.250		15.315		15.380	15.088 15.412	15.445	570 580
-50 -40								-1.724 -1.533				-50 -40	590 600							15.640				15.771 16.098	590 600
-30	-1.475	-1.456	-1.436	-1.417	-1.397	-1.378	-1.358	-1.338	-1.319	-1.299		-30	610	16.098	16.130	16.163	16.196	16.229	16.262	16.295	16.327	16.360	16.393	16.426	610
-20 -10			-1.240 -1.041			-1.181 -0.980	-1.161 -0.960	-1.141 -0.940		-1.101 -0.900	-1.081 -0.879	-20 -10	620 630							16.624 16.954					620 630
0	-0.879 -0.675	-0.859 -0.654	-0.839 -0.633			-0.777 -0.571	-0.757 -0.550	-0.736 -0.530	-0.716 -0.509	-0.695 -0.488	-0.675 -0.467	0 0	640 650							17.286 17.618					640 650
10	-0.467	-0.446	-0.425	-0.404	-0.383	-0.362	-0.341	-0.320	-0.299	-0.278	-0.256	10	660	17.752	17.785	17.819	17.852	17.886	17.919	17.952	17.986	18.019	18.053	18.086	660
20 30	-0.256 -0.043	-0.022	-0.214 0.000	0.022	-0.171 0.043	-0.150 0.065	-0.129 0.086	-0.107 0.108	0.130	0.151	-0.043 0.173	20 30	670 680	18.422	18.456	18.490	18.523	18.557	18.591	18.288 18.624	18.658	18.692	18.725	18.759	670 680
40 50	0.173 0.391	0.195 0.413	0.216 0.435	0.238 0.457	0.260 0.479	0.282 0.501	0.303 0.523	0.325 0.545	0.347 0.567	0.369 0.589	0.391 0.611	40 50	690 700							18.962 19.301					690 700
60	0.611	0.634	0.656	0.678	0.700	0.723	0.745	0.767	0.790	0.812	0.834	60	710	19.437	19.471	19.505	19.539	19.573	19.607	19.641	19.675	19.709	19.743	19.777	710
70 80	0.834 1.060		0.879 1.105		1.151	0.947 1.174	0.969 1.196		1.242	1.037 1.265	1.060 1.288	70 80	720	20.118	20.152	20.187	20.221	20.255	20.289	19.982 20.323	20.358	20.392	20.426	20.460	720 730
90 100	1.288 1.519	1.311 1.542	1.334 1.565	1.357 1.588	1.380 1.612	1.403 1.635	1.426 1.658		1.472 1.705	1.496 1.729	1.519 1.752	90 100	740 750		20.495 20.838		20.563	20.597	20.632	20.666	20.700	20.735	20.769	20.803	740 750
110	1.752	1.776	1.799	1.823	1.846	1.870	1.893	1.917	1.941	1.964	1.988	110	°F	20.803	20.838	20.872	3	4	5	6	7	8	9	10	^50 °F
120 130	1.988 2.227	2.012 2.251	2.036 2.275	2.060 2.299	2.083 2.323	2.107 2.347	2.131 2.371	2.155 2.395	2.179 2.420	2.203 2.444	2.227 2.468	120 130													
140 °F	2.468 0	2.492 1	2.517 2	2.541 3	2.565 4	2.590 5	2.614 6	2.639 7	2.663 8	2.687 9	2.712 10	140 °F													
L L	0	1	2	3	4	5	0	1	U	3	10	Г													

	<u> </u>		EXHAUST GAS
	E E	xhaust Gas Technologies I	
ORD		15642 DuPont Ave Suite B	
TOD	VI	Chino CA 91710	
S TOD		1-800-348-4678	
4		Fax-1-909-680-3226	ТМ
		ORDER FORM	TECHNOLOGIES, INC.
Customer Bill	ing Information *Pl		Phone Number:
Contact I	Name:		
Address or PC			
Address of PC) Box:	ate on Drewidence	Dostal Cada:
Tax ID # ·	51	Email Address	Postal Code:
$\frac{1 \text{ ax 1D } \pi }{}$			
Payment Met			(Paypal Acct: Sales@exhaustgas.com)
	UPS COD V	visa M/C Discover	www.Paypal.com
Cardit Card	N		
Expiration I	Number:	CVV2 Code:	_ (Last 3 digits on back of card)
Full Name o	n card:		(Last 5 digits on back of card)
Full Maine 0		(* 0	COD payments are bank cashiers check only)
Shipping Met	hod	Shipping Information	n (If Different)
UPS RED (Novt day)		
UPS Blue (
UPS Orang	e (3 day)		
UPS Groun	d (4-5 Days)		
USPS Prior			
<u>Quantity</u>	<u>Part Number</u>	<u>Descriptio</u>	on <u>Unit Cost</u>
	FAX OF	RDER TO: 1-909	-680-3226
1		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

TERMS

Terms & Conditions

Hours: 6:00 AM to 5:00 PM Pacific Standard Time, Monday - Friday.

QUOTATION: We highly recommend calling our sales staff for a competitive quote before ordering, All quotes are valid for 60 days.

ORDERING: Call, mail or fax your orders in. If mailing or faxing an order, please include your complete shipping address, and how you would like the order shipped C.O.D., Visa, M/C, & Discover. If paying with a credit card, include card number and expiration date along with the 3 digit security code on the back of the card. Billing address MUST match the credit card. Back orders will automatically be shipped as we restock, unless requested otherwise. You will be notified if your order cannot ship on time.

EXPIDITE ORDERS: Please indicate if the order is a Rush for expedite, the following additional charges will apply to qty as quoted: Same Day shipping add 100%, Shipping with-in 24 hrs add 45%, Shipping with-in 48-72 hrs add 30%.

PAYMENT: Prepayment by Visa, MasterCard, Discover & UPS COD is encouraged, orders outside U.S.A. a Bank Wire Transfer or www.PayPal.com is mandatory. Net 15 –30 Terms are offered on approved credit after a established business relationship.

PRICING: All prices in this catalog are in U.S. dollars and are subject to change without notice. Price at shipping date will prevail. We make every attempt to avoid error in pricing and product information. If a mistake does occur, we reserve the right to correct it, and we apologize for any inconvenience it may cause.

SHIPPING: All orders are shipped UPS or USPS mail service for a \$6.00 handling charge unless otherwise specified. We can ship on your UPS acct in the USA ,However handling charges still apply.

RETURNS: All returns are for exchange or credit only to make a return, call for an authorization number, securely package the item with a copy of the original invoice, and write the authorization number on the package. All returns must be made within 14 days of shipment. All returned goods must be in new condition. A 20% restocking fee will be charged on all accepted returns. No returns are allowed on special order items or electrical parts.

SHIPPING TO EGT: When shipping items to EGT for modification, enclose your name, full shipping address, phone number, method of payment, and services desired. Contact our sales department for scheduling prior to sending.

REFUSED SHIPMENTS: If you order products and then refuse the shipment, you will be charged shipping costs both ways and our normal restocking fee of 20%. No orders will be processed for customers with an outstanding balance due to a refused shipment.

TECHNICAL ASSISTANCE: Please feel free to call 800-348-4678. If you have any questions on EGT products. Assistance is available from 6:00 A.M. to 5:00 PM. P.S.T, Monday through Friday

ORDERING & GENERAL INFORMATION: Corporate Office: (800) 348-4678. FAX: (909)680-3226 Fax completed order form with credit card information. Be sure to include daytime phone and fax numbers. If any fax problems occur and you must resend, please mark your second fax "DUPLICATE".

DISCLAIMER OF ALL WARRANTIES: All warranties, either expressed or implied, including implied warranty or merchantability and any implied warranty of fitness for a particular purpose, are hereby excluded and disclaimed.

WARNING: EGT disclaims liability for all damages and/or injuries resulting from improper use. We strongly recommend that insulation be carried out and/or verified by a highly skilled professional technician.

ADDRESS:

Exhaust Gas Technologies Inc. 15642 DuPont Ave Suite B Chino CA 91710 Website: www.exhaustgas.com / e-mail: sales@exhaustgas.com Sales & Tech Support 1-800-348-4678 / Fax. 909-680-3226

EGT Supports Our Troops

SUPPORTING OUR TROOPS


In 2008, Exhaust Gas Technologies joined forces with Kenny Bernstein Racing, Ringer Manufacturing, MONSTER Energy Drinks, and Main Gate Incorporated in providing needed equipment and refreshments for the 257th Transportation Maintenance Company stationed at Camp Arijan, Kuwait. These men and woman are in charge of maintenance and repair of all types of military vehicles coming out of Iraq. The Army was having intermittent supply issues securing quality mechanics gloves for the troops of the 257th. In addition, they were tearing their hands up working 24/7 on the damaged vehicles, slowing the return of equipment back to Baghdad. We heard of the problem in June and by mid-July shipped the needed supplies directly from Kenny Bernstein Racing to Kuwait. Captain, Valeria A. Anderson, Company Commander of the 257th., accepted the shipment and dispersed the supplies to her troops. As you can see, they surly seemed pleased with our support.

We want to thank Captain Valeria Anderson and the 257th. for the opportunity to assist our troops, while they are serving our country in Kuwait. We salute you and your soldiers, for supporting our American Forces in the middle of the desert.

Just a side note, as I write this in mid-August, the weather in Kuwait is 131 F., Winds NW 29 MPH, Heavy Blowing Widespread Dust and Humidity of 14%. It is rarely under 100F, between Mid July and late September, day or night!

MACcc-400 Mobile Aircraft Composite Control Center

In case you have not noticed, the Commercial Aircraft Industry has undergone some dramatic technological changes lately. These new aircraft are more ecofriendly by being lighter, stronger, faster, and quieter plus 20% more fuel-efficient. If that was not enough to tweak your Green brain cells, there are even more technologies to ponder. These planes are being constructed using the latest advancements in composites. Using carbon fiber webbing and super epoxies that are impregnated into the fabric materials, manufacturers have developed surfaces that are smooth and near fastener-free. Wings, fuselages, decks and bulkheads are all "Bonded" together into a one-piece plane can produce wondrous benefits for customer comforts, greater aircraft longevity at lower cost per year of service and dramatically different maintenance procedures.

Boeing's new 787 Dreamliner program is one step closer to accomplishing all this and more. What "more" would you want or possibly need? With the new planes comes a completely new procedure to maintain and repair all aspects of this generation of aircraft. In the case of the 787 Dreamliner, maintenance procedures needed

to be designed, developed, tested and retested to assure the highest level of serviceability coupled with repair integrity beyond anything in existence before. Ground crews have always had incidences with aircraft that requires either major or minor repairs before returning the plane to service. Wing damage, fuselage dents or collisions with ground service equipment have challenged repair teams on metal aircraft. A composite aircraft has greater resistance to damage but composites change everything that is needed to perform these same repair services.

Instead of metal and fasteners, the new technologies require a complete supply of pre-impregnated and vacuum-bagging materials, tapes, tools, heaters and temperature sensors to monitor and control the repair process. Additionally, specially designed equipment that supervise all the temperature points, vacuum levels, ramp-up and cool-down programs, plus complex data analysis needed to be developed. This repair system needed to handle 240 volts with four hundred amperes, enough power to handle multiple repairs simultaneously, while producing enough deep vacuum supply to handle a 100 square foot repair area. The data collection network needed to cohabitate in the repair area with high voltage heaters, motors and generators, and still offer quantitative data that is free of electrical distortion. One last requirement stated that this system needed to be easy enough to set-up and run, so that reguir repair personnel could accomplish the required repair task. Years of engineering research and design, has led to the development of the MACcc – 400, Mobile Aircraft Composite Control Center by Exhaust Gas Technologies in Chino, California. EGT has assembled an impressive staff of multitalented engineers offering over 40 years of successful industrial thermal processing equipment, plus over 30 years of award winning data acquisition technologies that have revolutionized the Motorsports industry.

The technology incorporated within the MACcc-400, ensures quantitative data collection regardless of the level of outside distortions in the repair area. With the MACcc-400, every possible data point is controlled, monitored and recorded. Power levels, vacuum levels, valve positions, time of repair start, through repair completion, down to the second are stored for later analysis. High alarms, low alarms, rate of rise and fall alarms watch over every aspect of the work. Time is monitored over every segment of the repair, so the repair crews know if something is slower or faster than normal, or different from programmed, they need to search the cause before proceeding. There are over 24,000 lines of code consuming more than 3,000 engineering hours and introducing CANbus technology for multiplex inputs, reducing external wiring for the system by 94% were achieved. With continual feedback from top technicians in the field, engineers are able to refine data screens so that technicians have everything readily available, and additional, more complex screens are available for supervisors and engineers. Memory is stored in multiple locations to eliminate the possibility of data loss. The MAC – 400 systems manages over 80,000 watts of total power and 72,000 watts feeding the custom electric flexible heaters maintaining control accuracy down to two degrees Fahrenheit, at 350 F. The engineering staff at EGT has developed composite curing systems since 1988 and has assembled support sources that represent the best of the best.

Specialty teams including ground personnel, engineers and experienced technicians have been trained and retrained to perform every level of repair necessary to maintain these aircraft in top working condition. Not only does the repair area need to be equal or better than the original, it must be cosmetically perfect to the rest of the plane. If you were the owner of these planes, you would not tolerate a blotchy multi-patch appearance, so perfection is the only acceptable goal. With new technologies come new procedures, new equipment and new standards of performance and safety. This is the most technologically advanced and powerful, portable composite data control system in existence today. The Boeing 787 Dreamliner incorporates years of research by thousands of dedicated employees and vendors to achieve the vision of a truly futuristic air travel experience for you, the customer.

If you would like more information on what the MACcc-400 can do for your application, feel free to contact us.

Toll Free at 1-800-348-4678 or 1-909-548-8100. Email: Sales@exhaustgas.com

This catalog was produced by Rick Lawler

PayPal

VISA

Exhaust Gas Technologies Inc. 15642 DuPont Ave. Suite B Chino, CA 91710 1-800-348-4678 Fax 909-680-3226 www.exhaustgas.com email Sales@exhaustgas.com